精英家教网 > 高中数学 > 题目详情
(2012•安徽模拟)定义在R上的奇函数f(x)满足:x≤0时f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,则f(2)=(  )
分析:根据奇函数f(x)得f(0)=0,f(-1)=-
1
2
建立方程组,解之可求出a与b的值,从而求出x≤0时f(x)的解析式,再根据奇函数性质可求出所求.
解答:解:∵定义在R上的奇函数f(x)
∴f(0)=f(-0)=-f(0)即f(0)=0
∵f(1)=
1
2
,∴f(-1)=-
1
2

∵x≤0时f(x)=ax+b
a0+b=0
a-1+b=-
1
2
a=2
b=-1

即f(x)=2x-1   (x≤0)
∴f(2)=-f(-2)=-(2-2-1)=
3
4

故选A.
点评:本题主要考查了函数奇偶性的性质,以及函数求值,同时考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)在复平面内,复数z=
1+i
i-2
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)(理)若变量x,y满足约束条件
x+y-3≤0
x-y+1≥0
y≥1
,则z=|y-2x|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及当取最大值时x的取值集合.
(2)在三角形ABC中,a,b,c分别是角A,B,C所对的边,对定义域内任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步练习册答案