分析 (I)首利用函数的导数与极值的关系求出a的值,确定函数在区间[1,4]上的单调性即可;
(Ⅱ)求出函数的导数,问题转化为即a≤$\frac{{3x}^{2}-3}{2x}$=$\frac{3}{2}$(x-$\frac{1}{x}$)在x∈[1,+∞)上恒成立,令$g(x)=\frac{3}{2}(x-\frac{1}{x})$,x∈[1,+∞),根据函数的单调性求出a的范围即可;
(Ⅲ)可以先假设存在,将函数g(x)=bx的图象与函数f(x)的图象恰有3个不同的交点,等价于方程x3-4x2-3x=bx恰有3个不等的实数根,进一步转化为方程x2-4x-3-b=0有两个非零实数根,即可求得结论.
解答 解:(Ⅰ)∵f'(x)=3x2-2ax-3
∴$f'(-\frac{1}{3})=3×{(-\frac{1}{3})^2}-2a×(-\frac{1}{3})-3=0$得a=4.
∴f'(x)=3x2-8x-3由3x2-8x-3<0解得$-\frac{1}{3}<x<3$
f(x)的单调递减区间为$[{-\frac{1}{3},\;3}]$;
(Ⅱ)f′(x)=3x2-2ax-3≥0在x∈[1,+∞)上恒成立,
即a≤$\frac{{3x}^{2}-3}{2x}$=$\frac{3}{2}$(x-$\frac{1}{x}$)在x∈[1,+∞)上恒成立,
令$g(x)=\frac{3}{2}(x-\frac{1}{x})$,x∈[1,+∞)
∵$g'(x)=\frac{3}{2}(1+\frac{1}{x^2})>0$在x∈[1,+∞)上恒成立
∴$g(x)=\frac{3}{2}(x-\frac{1}{x})$,在[1,+∞)上单调递增
∴g(x)min=g(1)=0
∴a≤0;
(Ⅲ)问题即为是否存在实数b,使得函数x3-4x2-3x=bx恰有3个不同根,
方程可化为x[x2-4x-(3+b)]=0 等价于 x2-4x-(3+b)=0有两不等于0的实根,
则△>0且b≠-3,
所以b>-7,b≠-3.
点评 本题考查导数知识的运用,考查函数的单调性、极值与最值,考查图象的交点,熟练运用导数与函数单调性的关系,将图象的交点问题转化为方程根的研究是解题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-∞,0] | C. | (0,+∞) | D. | [0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$π | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 1 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-2)2+y2=5 | B. | x2+(y-2)2=5 | C. | (x+2)2+(y+2)2=5 | D. | x2+(y+2)2=5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com