精英家教网 > 高中数学 > 题目详情
设等比数列{an}中,前n项之和为Sn,已知S3=8,S6=7,则a7+a8+a9=(  )
A、-
1
8
B、
1
8
C、
57
8
D、
55
8
分析:由S6减S3得到a4+a5+a6的值,然后利用等差比数列的性质找出a4+a5+a6的和与a1+a2+a3的和即与S3的关系,由S3的值即可求出公比q的值,然后再利用等比数列的性质求出a7+a8+a9的值.
解答:解:a4+a5+a6=S6-S3=7-8=-1,
a4+a5+a6=a1q3+a2q3+a3q3=(a1+a2+a3)q3
所以q3=-
1
8

则a7+a8+a9=a4q3+a5q3+a6q3=
1
8

故选B.
点评:此题考查学生灵活运用等比数列的性质化简求值,是一道中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、设等比数列an中,每项均是正数,且a5a6=81,则 log3a1+log3a2+…+log3a10=
20

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}中,前n项和为Sn,已知S3=8,S6=7,则a7+a8+a9=
1
8
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}中,前n项和为Sn,已知S3=8,S6=7,则a6+a7+a8=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}中,已知a3=2,a7=8,则a5=(  )

查看答案和解析>>

同步练习册答案