【题目】如图,三棱柱
中,
平面
,
,
,
,
,
是
的中点,
是
的中点.
![]()
(Ⅰ)证明:
平面
;
(Ⅱ)
是线段
上一点,且直线
与平面
所成角的正弦值为
,求二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】2019年12月以来,湖北武汉市发现多起病毒性肺炎病例,并迅速在全国范围内开始传播,专家组认为,本次病毒性肺炎病例的病原体初步判定为新型冠状病毒,该病毒存在人与人之间的传染,可以通过与患者的密切接触进行传染.我们把与患者有过密切接触的人群称为密切接触者,每位密切接触者被感染后即被称为患者.已知每位密切接触者在接触一个患者后被感染的概率为
,某位患者在隔离之前,每天有
位密切接触者,其中被感染的人数为
,假设每位密切接触者不再接触其他患者.
(1)求一天内被感染人数为
的概率
与
、
的关系式和
的数学期望;
(2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有
位密切接触者,从某一名患者被感染,按第1天算起,第
天新增患者的数学期望记为
.
(i)求数列
的通项公式,并证明数列
为等比数列;
(ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率
,当
取最大值时,计算此时
所对应的
值和此时
对应的
值,根据计算结果说明戴口罩的必要性.(取
)
(结果保留整数,参考数据:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知直线
的参数方程为
为参数,
),以原点
为极点,以
轴正半轴建立极坐标系,曲线
的极坐标系方程为
.
(1)写出直线
的极坐标方程和曲线
的直角坐标方程;
(2)若直线
与曲线
相交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
,以坐标原点
为极点,
轴非负半轴为极轴建立极坐标系,点
为曲线
上的动点,点
在线段
的延长线上,且满足
,点
的轨迹为
.
(1)求曲线
,
的极坐标方程;
(2)设点
的极坐标为
,求
面积的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2017年1月至2019年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )
![]()
A.年接待游客量逐年增加
B.各年的月接待游客量高峰期大致在8月
C.2017年1月至12月月接待游客量的中位数为30万人
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人在政治、历史、地理、物理、化学、生物、技术7门学科中任选3门.若同学甲必选物理,则下列说法正确的是( )
A.甲、乙、丙三人至少一人选化学与全选化学是对立事件
B.甲的不同的选法种数为15
C.已知乙同学选了物理,乙同学选技术的概率是![]()
D.乙、丙两名同学都选物理的概率是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省新高考将实行“
”模式,“3”为全国统考科目语文数学外语,所有学生必考;“1”为首选科目,考生须在物理历史两科中选择一科;“2”为再选科目,考生可在化学生物思想政治地理4个科目中选择两科.某考生已经确定“首选科目”为物理,如果他从“再选科目”中随机选择两科,则思想政治被选中的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,若椭圆经过点
,且△PF1F2的面积为2.
(1)求椭圆
的标准方程;
(2)设斜率为1的直线
与以原点为圆心,半径为
的圆交于A,B两点,与椭圆C交于C,D两点,且
(
),当
取得最小值时,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com