【题目】已知椭圆
:
的左、右焦点分别为
,
,若椭圆经过点
,且△PF1F2的面积为2.
(1)求椭圆
的标准方程;
(2)设斜率为1的直线
与以原点为圆心,半径为
的圆交于A,B两点,与椭圆C交于C,D两点,且
(
),当
取得最小值时,求直线
的方程.
科目:高中数学 来源: 题型:
【题目】已知点
为抛物线
的焦点,过点
任作两条互相垂直的直线
,
,分别交抛物线
于
,
,
,
四点,
,
分别为
,
的中点.
(1)求证:直线
过定点,并求出该定点的坐标;
(2)设直线
交抛物线
于
,
两点,试求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】陕西关中的秦腔表演朴实,粗犷,细腻,深刻,再有电子布景的独有特效,深得观众喜爱.戏曲相关部门特意进行了“喜爱看秦腔”调查,发现年龄段与爱看秦腔的人数比存在较好的线性相关关系,年龄在
,
,
,
的爱看人数比分别是0.10,0.18,0.20,0.30.现用各年龄段的中间值代表年龄段,如42代表
.由此求得爱看人数比
关于年龄段
的线性回归方程为
.那么,年龄在
的爱看人数比为( )
A.0.42B.0.39C.0.37D.0.35
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
在椭圆
上,
、
分别为
的左、右顶点,直线
与
的斜率之积为
,
为椭圆的右焦点,直线
.
(1)求椭圆
的方程;
(2)直线
过点
且与椭圆
交于
、
两点,直线
、
分别与直线
交于
、
两点.试问:以
为直径的圆是否过定点?如果是,求出定点坐标,否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.
![]()
(1)根据条形统计图,估计本届高三学生本科上线率.
(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.
(i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);
(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为
,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.
可能用到的参考数据:取
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com