【题目】在如图所示的几何体中,四边形
是菱形,四边形
是矩形,平面
平面
,
,
,
,
为
的中点,
为线段
上的一点.
![]()
(1)求证:
;
(2)若二面角
的大小为
,求
的值.
【答案】(1)证明见解析;(2) ![]()
【解析】
(1)连接DB,由已知可得△ABD为等边三角形,得到DE⊥AB,则DE⊥DC,再由ADNM为矩形,得DN⊥AD,由面面垂直的性质可得DN⊥平面ABCD,得到DN⊥DE,由线面垂直的判断可得DE⊥平面DCN,进一步得到DE⊥CN;
(2)由(1)知DN⊥平面ABCD,得到DN⊥DE,DN⊥DC,又DE⊥DC,以D为坐标原点,DE、DC、DN分别为x轴、y轴、z轴建立空间直角坐标系,设
,λ∈[0,1],分别求出平面PDE与平面DEC的一个法向量,由二面角P﹣DE﹣C的大小为
列式求得λ即可.
(1)连接
.
在菱形
中,
,
,
为等边三角形.
又
为
的中点,
.
又
,
.
四边形
为矩形,
.
又
平面
平面
,
平面
平面
,
平面
,
平面
.
平面
,
.
又![]()
平面
.
平面
,
.
(2)由(1)知
平面
,
平面
,
。
两两垂直.
以
为坐标原点,
所在的直线分别为
轴、
轴、
轴,建立如图所示的空间直角坐标系,
![]()
则
,
,
设
,
则
,
.
设平面
的法向量为
,
则
,
即
,
令
,则
.
由图形知,平面
的一个法向量为
,
则
,
即
,即
.
,
解得
,
的值为
.
科目:高中数学 来源: 题型:
【题目】西安市自2017年5月启动对“车不让人行为”处罚以来,斑马线前机动车抢行不文明行为得以根本改变,斑马线前礼让行人也成为了一张新的西安“名片”.
但作为交通重要参与者的行人,闯红灯通行却频有发生,带来了较大的交通安全隐患及机动车通畅率降低,交警部门在某十字路口根据以往的检测数据,得到行人闯红灯的概率约为0.4,并从穿越该路口的行人中随机抽取了200人进行调查,对是否存在闯红灯情况得到
列联表如下:
30岁以下 | 30岁以上 | 合计 | |
闯红灯 | 60 | ||
未闯红灯 | 80 | ||
合计 | 200 |
近期,为了整顿“行人闯红灯”这一不文明及项违法行为,交警部门在该十字路口试行了对闯红灯行人进行经济处罚,并从试行经济处罚后穿越该路口行人中随机抽取了200人进行调查,得到下表:
处罚金额 | 5 | 10 | 15 | 20 |
闯红灯的人数 | 50 | 40 | 20 | 0 |
将统计数据所得频率代替概率,完成下列问题.
(Ⅰ)将
列联表填写完整(不需写出填写过程),并根据表中数据分析,在未试行对闯红灯行人进行经济处罚前,是否有99.9%的把握认为闯红灯与年龄有关;
(Ⅱ)当处罚金额为10元时,行人闯红灯的概率会比不进行处罚降低多少;
(Ⅲ)结合调查结果,谈谈如何治理行人闯红灯现象.
参考公式:
,其中
参考数据:
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 1.132 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接2022年冬奥会,某市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记
表示学生的考核成绩,并规定
为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如图所示的茎叶图:
![]()
(1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核为优秀的概率;
(2)从图中考核成绩满足
的学生中任取3人,设
表示这3人中成绩满足
的人数,求
的分布列和数学期望;
(3)根据以往培训数据,规定当
时培训有效.请你根据图中数据,判断此次冰雪培训活动是否有效,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C:
(a>b>0)的离心率为
,椭圆C截直线y=1所得线段的长度为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|. 设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求
EDF的最小值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车又称为小黄车,近年来逐渐走进了人们的生活,也成为减少空气污染,缓解城市交通压力的一种重要手段.为调查某地区居民对共享单车的使用情况,从该地区居民中按年龄用随机抽样的方式随机抽取了
人进行问卷调查,得到这
人对共享单车的评价得分统计填入茎叶图,如下所示(满分
分):
![]()
![]()
(1)找出居民问卷得分的众数和中位数;
(2)请计算这
位居民问卷的平均得分;
(3)若在成绩为
分的居民中随机抽取
人,求恰有
人成绩超过
分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形
中,
∥
,
,
,将直角梯形
沿对角线
折起,使点
到
点位置,则四面体
的体积的最大值为________,此时,其外接球的表面积为________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
与过点
的直线
交于
两点.
(1)若
,求直线
的方程;
(2)若
,
轴,垂足为
,探究:以
为直径的圆是否过定点?若是,求出该定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在圆心角为直角,半径为
的扇形区域内进行野外生存训练.如图所示,在相距
的
,
两个位置分别为300,100名学生,在道路
上设置集合地点
,要求所有学生沿最短路径到
点集合,记所有学生进行的总路程为
.
![]()
(1)设
,写出
关于
的函数表达式;
(2)当
最小时,集合地点
离点
多远?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
分别为椭圆
的左、右焦点,点
在椭圆上,且
轴,
的周长为6.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点
的直线与椭圆
交于
,
两点,设
为坐标原点,是否存在常数
,使得
恒成立?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com