精英家教网 > 高中数学 > 题目详情
在如图所示的几何体ABCED中,EC⊥面ABC,DB⊥面ABC,CE=CA=CB=2DB,∠ACB=90°,M为
AD的中点.(1)证明:EM⊥AB;(2)求直线BM和平面ADE所成角的正弦值.
(1)证明:以C为原点建立如图所示的空间直角坐标系,设DB=1,则 CE=CA=CB=2.
由于A(2,0,0),B(0,2,0),E(0,0,2),D(0,2,1),M(1,1,
1
2
),∴
EM
=(1,1-
3
2
),
AB
=(-2,2,0),∴
EM
AB
=-2+2+0=0,∴
EM
AB
,∴EM⊥AB.
(2)由(1)知
BM
=(1,-1,
1
2
),
AD
=(-2,2,1),
AE
=(-2,0,2),
DE
=(0,-2,1).
设面ADE的法向量为
n
=(x,y,z),则
n
AE
=0
n•
DE
=0
,即
-2x+2z=0
-2y+z=0

n
=(2,1,2)设直线BM和平面ADE所成角为θ,则 sinθ=|cos<
BM
n
>=|
BM
n
|
BM
|•|
n
|
|=
4
9
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知SA、SB、SC是共点于S的且不共面的三条射线,∠BSA=∠ASC=45°,∠BSC=60°,求证:平面BSA⊥平面SAC

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为1的正方体ABCD-A1B1C1D1中,E,F,G分别为A1B1、B1C1、C1D1的中点.
(1)求异面直线AG与BF所成角的余弦值;
(2)求证:AG平面BEF;
(3)试在棱BB1上找一点M,使DM⊥平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M,N分别是AB,PC的中点.
(1)求二面角P-CD-B的大小;
(2)求证:平面MND⊥平面PCD;
(3)求点P到平面MND的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,AB=2,AA1=
3
,AD=2
2
,P为C1D1的中点,M为BC的中点.
(Ⅰ)证明:AM⊥PM;
(Ⅱ)求AD与平面AMP所成角的正弦值;
(Ⅲ)求二面角P-AM-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PD⊥底面ABCD,PD=DC=2AD,AD⊥DC,∠BCD=45°.
(1)设PD的中点为M,求证:AM平面PBC;
(2)求PA与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点.
(Ⅰ)求证:AN平面MEC;
(Ⅱ)在线段AM上是否存在点P,使二面角P-EC-D的大小为
π
6
?若存在,求出AP的长h;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间两条直线具有下列条件之一,则两直线一定平行的是(  )
A.同垂直于一条直线
B.同垂直于一个平面
C.同平行于一个平面
D.同在一个平面内

查看答案和解析>>

同步练习册答案