精英家教网 > 高中数学 > 题目详情
26、已知△ABC中∠ACB=90°,SA⊥面ABC,AD⊥SC,求证:AD⊥面SBC.
分析:要证线面垂直,关键要找到两条相交直线与之都垂直,先由线面垂直得线线垂直,然后利用线面垂直的判定得线面垂直继而得到线线垂直AD⊥BC,问题从而得证.
解答:证明:∵∠ACB=90°∴BC⊥AC(1分)
又SA⊥面ABC∴SA⊥BC(4分)
∴BC⊥面SAC(7分)
∴BC⊥AD(10分)
又SC⊥AD,SC∩BC=C∴AD⊥面SBC(12分)
点评:本题考查了线面垂直的判定和线面垂直的定义的应用,考查了学生灵活进行垂直关系的转化,是个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中AC=8,BC=7,∠A=60°,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中AC=4,AB=2若G为△ABC的重心,则
AG
BC
=
4
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△ABC中AC=4,AB=2若G为△ABC的重心,则
AG
BC
=______.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图23,已知△ABC中,AC=BC,∠CAB=α(定值),⊙O的圆心OAB上,并分别与ACBC相切于点PQ.

图23

(1)求∠POQ的大小;

(2)设DCA延长线上的一个动点,DE与⊙O相切于点M,点ECB的延长线上,试判断∠DOE的大小是否保持不变,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东师大附中高三(上)期末数学试卷(理科)(解析版) 题型:填空题

已知△ABC中AC=4,AB=2若G为△ABC的重心,则=   

查看答案和解析>>

同步练习册答案