精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=lnx-x,g(x)=$\frac{1}{2}$ax2-a(x+1)(其中a∈R),令h(x)=f(x)-g(x).
(1)当a>0时,求函数y=h(x)的单调区间;
(2)当a<0时,若f(x)<g(x)在x∈(0,-a)上恒成立,求a的最小整数值.

分析 (1)求导,分别判断导函数在定义域上各区间的符号,可得函数y=h(x)的单调区间;
(2)①当-$\frac{1}{a}$=1,即a=-1时,f(x)<g(x)恒成立;②当-$\frac{1}{a}$>1,即-1<a<0时,f(x)<g(x)恒成立;当-1<$\frac{1}{a}$<0,即a<-1时,考虑h(-a)<0时,a的取值,进而可得答案.

解答 解:(1)h(x)=f(x)-g(x)
=lnx-x-$\frac{1}{2}$ax2+a(x+1),
h′(x)=$\frac{1}{x}$-1-ax+a=(1-x)($\frac{1}{x}$+a),
∵a>0,∴$\frac{1}{x}$+a>0,
∴当0<x<1时,h′(x)>0;
当x>1时,h′(x)<0;
故函数y=h(x)的单调增区间为(0,1),单调减区间为(1,+∞);
(2)h(x)=f(x)-g(x)=lnx-x-$\frac{1}{2}$ax2+a(x+1),
h′(x)=$\frac{1}{x}$-1-ax+a=$\frac{(-a)(x-1)(x+\frac{1}{a})}{x}$,
令h′(x)=0,则x=1,x=-$\frac{1}{a}$,
①当-$\frac{1}{a}$=1,即a=-1时,h′(x)>0在x∈(0,1)上恒成立,
则h(x)在x∈(0,1)上为增函数,
h(x)<h(1)=-$\frac{5}{2}$<0,
∴f(x)<g(x)恒成立;
②当-$\frac{1}{a}$>1,即-1<a<0时,
h(x)在(0,1)上是增函数,此时0<-a<1,
故h(x)在(0,-a)上是增函数,h(x)<h(-a)<h(1)=$\frac{3}{2}a$-1<0,
解得:a<$\frac{2}{3}$
∴-1<a<0时,f(x)<g(x)恒成立;
③当-1<$\frac{1}{a}$<0,即a<-1时,
故h(x)在(0,-$\frac{1}{a}$)上是增函数,在(-$\frac{1}{a}$,1)上是减函数,在(1,-a)是增函数;
由$h(-\frac{1}{a})$=$ln(-\frac{1}{a})+\frac{1}{a}-\frac{1}{2}a•\frac{1}{{a}^{2}}+a(-\frac{1}{a}+1)$=$ln(-\frac{1}{a})-\frac{1}{2a}-1+\frac{1}{a}+a$=$ln(-\frac{1}{a})+\frac{2{a}^{2}+1}{2a}-1$<0,
故只需考虑h(-a)<0,
∵h(-a)=$ln(-a)+a-\frac{1}{2}a•{a}^{2}+a(-a+1)$=$ln(-a)-\frac{1}{2}{a}^{3}-{a}^{2}+2a$<0,
下面用特殊整数检验,
若a=-2,则h(2)=ln2+4-8=ln2-4<0
若a=-3,则h(3)=ln3+$\frac{27}{2}$-15=ln3-$\frac{3}{2}$<0
若a=-4,则h(4)=ln4+32-24=ln4+8>0
令u(x)=$-\frac{1}{2}{x}^{3}-{x}^{2}+2x$,则u′(x)=$-\frac{3}{2}{x}^{2}-2x+2$,
当x≤-4时,u′(x)<0恒成立,此时u(x)为减函数,
故u(x)≥u(4)>0
再由a≤-4时,ln(-a)>0,
故a≤-4时,h(-a)>0恒成立,
综上所述,使f(x)<g(x)在x∈(0,-a)上恒成立的a的最小整数值为-3.

点评 本题考查的知识点是导数法求函数的单调区间,恒成立问题,存在性讨论,分类讨论思想,难度较大,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知△ABC中,a=3,b=$\sqrt{6}$,A=60°,
(1)求sinC;
(2)求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知:对?x∈R,y=(x)满足f(a+x)=f(b-x)(其中a,b为常数),求证:y=f(x)的图象关于直线x=$\frac{a+b}{2}$对称.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某化肥厂生产甲、乙两种肥料,生产一车皮甲种肥料需要磷酸盐4吨、硝酸盐18吨;生产一车皮乙种肥料需要磷酸盐1吨、硝酸盐15吨.已知生产一车皮甲种肥料产生的利润是10万元,生产一车皮乙种肥料产生的利润是5万元.现库存磷酸盐10吨、硝酸盐66吨.如果该厂合理安排生产计划,则可以获得的最大利润是30万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在棱长为1的正方体ABCD-A1B1C1D1中,B1点到平面ACD1的距离为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在底面是菱形的四棱锥P-ABCD中∠ABC=60°,PA=AC=1,PB=PD=$\sqrt{2}$,若E是侧棱PD的中点
(Ⅰ)证明:PA⊥平面ABCD
(Ⅱ)求直线CE与底面ABCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知正方体ABCD-A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上
的点,且AM=AN=1.
(Ⅰ)证明:M,N,C,D1四点共面;
(Ⅱ)求几何体AMN-DD1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,BD、CE是△ABC的中线,P、Q分别是BD、CE的中点,则PQ:BC等于(  )
A.1:3B.1:4C.1:5D.1:6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.高为1的四棱锥S-ABCD的底面是边长为2的正方形,点S、A、B、C、D均在半径为$\frac{\sqrt{17}}{2}$的同一球面上,在底面ABCD的中心与顶点S之间的距离为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案