精英家教网 > 高中数学 > 题目详情
6.高为1的四棱锥S-ABCD的底面是边长为2的正方形,点S、A、B、C、D均在半径为$\frac{\sqrt{17}}{2}$的同一球面上,在底面ABCD的中心与顶点S之间的距离为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.$\sqrt{2}$

分析 由正方形的性质算出ABCD所在的平面小圆半径为r=$\sqrt{2}$.四棱锥S-ABCD的高为1,得到S在平行于ABCD所在平面且距离等于1的平面α上,由此结合球的截面圆性质和勾股定理加以计算,即可算出底面ABCD的中心与顶点S之间的距离.

解答 解:由题意,设正方形ABCD的中心为G,可得
∵ABCD所在的圆是小圆,对角线长为2$\sqrt{2}$,即小圆半径为r=$\sqrt{2}$
∵点S、A、B、C、D均在半径为$\frac{\sqrt{17}}{2}$的同一球面上,
∴球心到小圆圆心的距离OG=$\frac{3}{2}$,
∵四棱锥S-ABCD的高为1,
∴点S与ABCD所在平面的距离等于1,
设平面α∥平面ABCD,且它们的距离等于1,平面α截球得小圆的圆心为H,
则OH=$\frac{1}{2}$,
∴Rt△SOH中,SH2=OS2-OH2=R2-($\frac{1}{2}$)2=4,
可得SG$\sqrt{4+1}$=$\sqrt{5}$,即底面ABCD的中心G与顶点S之间的距离为$\sqrt{5}$
故选:C.

点评 本题给出四棱锥的四个顶点在同一个球面上,求它的顶点到底面中心的距离.着重考查了正方形的性质、球的截面圆性质和勾股定理等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-x,g(x)=$\frac{1}{2}$ax2-a(x+1)(其中a∈R),令h(x)=f(x)-g(x).
(1)当a>0时,求函数y=h(x)的单调区间;
(2)当a<0时,若f(x)<g(x)在x∈(0,-a)上恒成立,求a的最小整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在棱长为$\sqrt{6}$的正方体ABCD-A1B1C1D1中,D1到B1C的距离为(  )
A.$\sqrt{6}$B.2$\sqrt{3}$C.3$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某中学高二年级举行数学竞赛,共有800名学生参加.为了了解本次竞赛成绩,从中抽取了部分学生的成绩(得分均为整数,满分100分)进行统计.请你根据频率分布表,解答下列问题:
(1)填充下列频率分布表中的空格;
(2)估计众数、中位数和平均数;
(3)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名学生获奖?
 分组(分数)频数频率
[60,70)0.12
[70,80)20
[80,90)0.24
[90,100]12
 合计501

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.有一个三棱锥与一个四棱锥,棱长都相等,它们的一个侧面重叠后,还有暴露面的个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列叙述正确的个数是(  )
①若p∧q为假命题,则p、q均为假命题;
②若命题p:?x0∈R,x02-x0+1≤0,则¬p:?x∈R,x2-x+1>0;
③在△ABC中“∠A=60°”是“cosA=$\frac{1}{2}$”的充要条件;
④若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$<0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为钝角.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)是定义在R上的偶函数,且F(x)=f(x)+x,若F(2)=3,则F(-2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知球O的表面积为12π,则球O的体积为(  )
A.2$\sqrt{3}$πB.4$\sqrt{3}$πC.12$\sqrt{3}$πD.32$\sqrt{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.用“秦九韶算法”计算多项式f(x)=4x5-3x4+4x3-2x2-2x+3的值,当x=3时,V3=91.

查看答案和解析>>

同步练习册答案