(08年丰台区统一练习一理)(14分)
已知函数
,数列
是公差为d的等差数列,
是公比为q
(
)的等比数列.若![]()
![]()
![]()
![]()
(Ⅰ)求数列
,
的通项公式;
(Ⅱ)设数列
对任意自然数n均有
,求
的值;
(Ⅲ)试比较
与
的大小.
解析:(Ⅰ) ∵
, ∴
.
即
, 解得 d =2.
∴
. ∴
. ………………………………… 2分
∵
, ∴
.
∵
, ∴
.
又
, ∴
.………………………………………… 4分
(Ⅱ) 由题设知
, ∴
.
当
时,
,
,
两式相减,得
.
∴
(
适合).…………………………… 7分
设T=
,
∴ ![]()
![]()
两式相减 ,得
![]()
![]()
![]()
.
∴
.………………………………………………… 9分
(Ⅲ) ![]()
![]()
, ![]()
.
现只须比较
与
的大小.
当n=1时,
;
当n=2时,
;
当n=3时,
;
当n=4时,
.
猜想
时,
.
用数学归纳法证明
(1)当n=2时,左边
,右边
,
成立.
(2)假设当n=k时, 不等式成立,即
.
当n=k+1时, ![]()
![]()
.
即当n=k+1时,不等式也成立.
由(1)(2),可知
时,
都成立.
所以
(当且仅当n=1时,等号成立)
所以![]()
.即![]()
. …………………………… 14分
科目:高中数学 来源: 题型:
(09年江苏百校样本分析)(10分)挑选空军飞行学员可以说是“万里挑一”,要想通过需过“五关”――目测、初检、复检、文考、政审等. 某校甲、乙、丙三个同学都顺利通过了前两关,有望成为光荣的空军飞行学员. 根据分析,甲、乙、丙三个同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,通过政审关的概率均为1.后三关相互独立.
(1)求甲、乙、丙三个同学中恰有一人通过复检的概率;
(2)设通过最后三关后,能被录取的人数为
,求随机变量
的期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年周至二中三模理) 已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a2等于 ( )
(A)-4 (B)-6 (C)-8 (D)-10
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年滨州市质检三文)(12分)已知函数
.
(I)当m>0时,求函数
的单调递增区间;
(II)是否存在小于零的实数m,使得对任意的
,都有
,若存在,求m的范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com