精英家教网 > 高中数学 > 题目详情
如图,PD是圆柱的母线,AC和BD是圆柱底面圆的互相垂直的两条直径,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F(1)求证:PB⊥平面EFD;(2)求二面角C-PB-D的大小.

【答案】分析:(1)证明PB垂直于平面EFD内的2条相交直线EF和DE.
(2)先证明∠EFD是二面角C-PB-D的平面角,解Rt△PDB,求出该角的余弦值,从而求出该角的大小.
解答:解:(1)因为PD是圆柱的母线,AC和BD是圆柱底面圆的互相垂直的两条直径,
所以PD⊥平面ABCD,PD⊥BC,四边形ABCD是正方形,BC⊥CD,
所以BC⊥平面PDC,又DE?平面PDC,
所以DE⊥BC,因为PD=DC,点E是PC的中点,所以DE⊥PC,
于是DE⊥平面PBC,有DE⊥PB,由EF⊥PB,EF∩DE=E,
得PB⊥平面EFD.
(2)由(1)知,PB⊥平面EFD,所以PB⊥DF,∠EFD是二面角C-PB-D的平面角,
设PD=DC=a,有
在Rt△PDB中,
在Rt△PCB中,

于是
所以∠EFD=60°.于是二面角C-PB-D的大小为60°
点评:本题考查线面垂直的判定方法,及求二面角的大小的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,A1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A、B的任=A意一点,A1A=AB=2.
(1)求证:BC⊥平面A1AC;
(2)求三棱锥A1-ABC的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,PD是圆柱的母线,AC和BD是圆柱底面圆的互相垂直的两条直径,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F(1)求证:PB⊥平面EFD;(2)求二面角C-PB-D的大小.

查看答案和解析>>

科目:高中数学 来源:2010年山东省北校区高二上学期第一次月考数学卷 题型:解答题

(本题满分8分)如图,A1A是圆柱的母线,AB是圆柱底面圆的直径, C是底面圆周上异于A,B的任意一点,A1A= AB=2.

(Ⅰ)求证: BC⊥平面A1AC;

(Ⅱ)求三棱锥A1-ABC的体积的最大值.

 

 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PD是圆柱的母线,AC和BD是圆柱底面圆的互相垂直的两条直径,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F(1)求证:PB⊥平面EFD;(2)求二面角C-PB-D的大小.
精英家教网

查看答案和解析>>

同步练习册答案