精英家教网 > 高中数学 > 题目详情
如图,正方形ABCD的边长为2,分别以DB,AC所在直线为x,y轴建立直角坐标系,用斜二测画法得到水平放置的正方形ABCD的直观图A′B′C′D′,则四边形A′B′C′D′的面积为
 
考点:平面图形的直观图
专题:空间位置关系与距离
分析:由直观图和原图的面积之间的关系
S直观图
S原图
=
2
4
,直接求解即可.
解答: 解:因为
S直观图
S原图
=
2
4

∵正方形ABCD的边长为2,
∴正方形ABCD的面积为:4,
∴四边形A′B′C′D′的面积为
2
4
×4=
2

故答案为:
2
点评:本题考查斜二测画法中原图和直观图面积之间的关系,属基本概念、基本运算的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某中学部分学生参加市数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,满分120分),并且绘制了“频数分布直方图”(如图)如果90分以上(含90分)获奖,那么该校参赛学生的获奖率为(  )
A、
4
5
B、
7
16
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有(  )
A、30B、20C、10D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

奇函数f(x)满足f(x+4)=f(x),且当x∈(-2,0]时,f(x)=log2(1-x),求f(2013)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,AB为圆O的直径,CD为垂直AB的一条弦,垂足为E,弦AG交CD于F.
(1)求证:E、F、G、B四点共圆;
(2)若GF=2FA=4,求线段AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示(单位:m),则该几何体的体积为(  )
A、2
3
m3
B、4
3
m3
C、
10
3
3
m3
D、
20
3
3
m3

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:2cos
π
2
-tan
π
4
+
3
4
tan2
π
6
-sin
π
6
+cos2
π
6
+sin
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
-x2-2x+3,x≤0
|2-lnx|,x>0
,直线y=m与函数f(x)的图象相交于四个不同的点,从小到大,交点横坐标依次记为a,b,c,d,有以下四个结论
①(1).m∈[3,4)
②abcd∈[0,e4
③a+b+c+d∈[e5+
1
e
-2,e6+
1
e2
-2)

④若关于x的方程f(x)+x=m恰有三个不同实根,则m取值唯一.
则其中正确的结论是(  )
A、①②③B、①②④
C、①③④D、②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log4(4x+1)-
x
2

(Ⅰ)判断f(x)的奇偶性,并说明理由;
(Ⅱ)若方程f(x)-m=0有解,求m的取值范围;
(Ⅲ)若函数g(x)=log4[1+2x+3x+…+(n-1)x-nxa],n≥2,n∈N,对任意x∈(-∞,1]有意义,求a的取值范围.

查看答案和解析>>

同步练习册答案