精英家教网 > 高中数学 > 题目详情
计算:2cos
π
2
-tan
π
4
+
3
4
tan2
π
6
-sin
π
6
+cos2
π
6
+sin
2
考点:同角三角函数基本关系的运用
专题:计算题,三角函数的求值
分析:运用特殊角的三角函数值,即可化简得到.
解答: 解:2cos
π
2
-tan
π
4
+
3
4
tan2
π
6
-sin
π
6
+cos2
π
6
+sin
2

=2×0-1+
3
4
×(
3
3
)2
-
1
2
+(
3
2
2+(-1)
=-1+
3
4
×
1
3
-
1
2
+
3
4
-1
=-
3
2
点评:本题考查三角函数的求值,考查特殊角的三角函数值,熟记它们是迅速解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,在矩形ABCD中,AB=3,AD=
3
,E为CD边上的点,且EC=2DE,AE与BD相交于点O,现沿AE将△ADE折起,连接DB,DC得到如图2所示的几何体.

(1)求证:AE⊥平面DOB;
(2)当平面ADE⊥平面ABCE时,求二面角A-DE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,终边落在OA位置的角α的集合是
 
;终边落在OB位置,且在-360°~360°内的角α的集合是
 
;终边落在阴影部分(不含边界)的角α的集合是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD的边长为2,分别以DB,AC所在直线为x,y轴建立直角坐标系,用斜二测画法得到水平放置的正方形ABCD的直观图A′B′C′D′,则四边形A′B′C′D′的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆的中心在原点,焦点F1、F2在x轴上,A、B是椭圆的顶点,P是椭圆上一点,且
PF1⊥x轴,PF2∥AB,则此椭圆的离心率是(  )
A、
1
2
B、
1
3
C、
5
5
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程
|x|
x+4
=kx2
有四个不同的实数解,则k的取值范围为(  )
A、(0,1)
B、(
1
4
,1)
C、(
1
4
,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①(
a
2•(
a
2=|
a
|4
②(
a
b
)•
c
=(
a
c
)•
b

③|
a
b
|=|
a
|•|
b
|;
④若
a
b
b
c
,则
a
c

a
b
,则存在唯一实数λ,使
b
a

⑥若
a
c
=
b
c
,且
c
0
,则
a
=
b

⑦设
e1
e2
是平面内两向量,则对于平面内任何一向量
a
,都存在唯一一组实数x、y,使
a
=x
e1
+y
e2
成立;
⑧若
a
b
=0,则
a
=
0
b
=
0

真命题的题号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<a<1,则在同一坐标系中,函数y=a-x与y=logax的图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且a1=2,an+1=2Sn+2.
(1)求数列{an}的通项公式;
(2)若数列{bn}的各项均为正数,且bn
n
an
n
an+2
的等比中项,求bn的前n项和Tn

查看答案和解析>>

同步练习册答案