精英家教网 > 高中数学 > 题目详情
17.用数字1,2组成四位数,且数字1,2都至少出现一次,这样的四位数共有(  )个.
A.13B.14C.15D.16

分析 首先确定数字中1和2的个数,当数字中有1个1,3个2时,当数字中有2个1,2个2时,当数字中有3个1,1个2时,写出每种情况的结果数,即可求答案.

解答 解:根据题意,首先确定数字中1和2的个数,
当数字中有1个1,3个2时,共有C41=4种结果,
当数字中有2个1,2个2时,共有C42=6种结果,
当数字中有3个1,1个2时,共有有C41=4种结果,
根据分类加法原理知共有4+6+4=14种结果,
故选:B.

点评 本题考查分步计数原理的运用,关键是正确理解“数字1,2都至少出现一次”的含义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin2x,则$f'({\frac{π}{6}})$=(  )
A.1B.$\sqrt{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.用数字1,2,3,4,5组成的没有重复数字的五位偶数的个数是(  )
A.120B.60C.50D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份星期一到星期日某一时间段车流量与PM2.5的数据如表:
时间星期一星期二星期三星期四星期五星期六星期日
车流量x(万辆)1234567
PM2.5的浓度y
(微克/立方米)
27313541495662
(1)在表中画出车流量与PM2.5浓度的散点图.
(2)求y关于x的线性回归方程;
(3)①利用所求回归方程,预测该市车流量为8万辆时,PM2.5的浓度;
②规定当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良,为使该市某日空气质量等级为优或良,则应控制当天车流量在多少万辆以内(结果以万辆为单位,保留整数)
参考公式:回归直线的方程是$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.运行两次如图所示的程序框图,若第一次与第二次输入的a的值之和为0,则第一次与第二次输出的a的值之和为(  )
A.0B.1C.0或1D.-1或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=|1-$\frac{1}{x}$|,若存在实数a,b(a<b),使得y=f(x)在[a,b]上的值域为[ma,mb],求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx+$\frac{2}{x}$+ax-a-2(其中a>0).
(1)当a=1时,求f(x)的最小值;
(2)若x∈[1,3]时,f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln(ax+1)+x3-x2-ax(a∈R).
(1)若x=$\frac{2}{3}$为函数f(x)的极值点,求实数a的值;
(2)若a=-1时,方程f(1-x)-(1-x)3=b有实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(x+1)-f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)设g(x)=f(2x),求g(x)在[-3,0]的最大值与最小值.

查看答案和解析>>

同步练习册答案