精英家教网 > 高中数学 > 题目详情
5.复数z=$\frac{1-i}{2i}$,其中i是虚数单位,则复数z的虚部是$-\frac{1}{2}$.

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:∵z=$\frac{1-i}{2i}$=$\frac{-i(1-i)}{-2{i}^{2}}=-\frac{1}{2}-\frac{i}{2}$,
∴复数z的虚部是-$\frac{1}{2}$.
故答案为:$-\frac{1}{2}$.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=x-$\frac{4}{x}$的零点个数是(  )
A.0B.1C.2D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合$A=\{x\left|{\frac{x-5}{x+1}≤0}\right.\}$,B={x|x2-2x-m<0}.
(1)当m=3时,求(∁RB)∩A;
(2)若A∩B={x|-1<x<4},求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知tan(π+θ)=-3,求4sin2θ-3sinθcosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将一张画有直角坐标系的图纸折叠一次,使得点A(0,2)与点B(4,0)重合,若此时点C(7,3)与点D(m,n)重合,则m+n的值为(  )
A.6B.$\frac{31}{2}$C.5D.$\frac{34}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某湿地公园内有一条河,现打算建一座桥(如图1)将河两岸的路连接起来,剖面设计图纸(图2)如下,

其中,点A,E为x轴上关于原点对称的两点,曲线段BCD是桥的主体,C为桥顶,并且曲线段BCD在图纸上的图形对应函数的解析式为y=$\frac{8}{4+{x}^{2}}$(x∈[-2,2]),曲线段AB,DE均为开口向上的抛物线段,且A,E分别为两抛物线的顶点.设计时要求:保持两曲线在各衔接处(B,D)的切线的斜率相等.
(1)曲线段AB在图纸上对应函数的解析式,并写出定义域;
(2)车辆从A经B到C爬坡,定义车辆上桥过程中某点P所需要的爬坡能力为:M=(该点P与桥顶间的水平距离)×(设计图纸上该点P处的切线的斜率)其中MP的单位:米.若该景区可提供三种类型的观光车:①游客踏乘;②蓄电池动力;③内燃机动力,它们的爬坡能力分别为0.8米,1.5米,2.0米,用已知图纸上一个单位长度表示实际长度1米,试问三种类型的观光车是否都可以顺利过桥?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知抛物线:y2=4x,直线l:x-y+4=0,抛物线上有一动点P到y轴的距离为d1,P到直线l的距离为d2,则d1+d2的最小值为(  )
A.$\frac{5\sqrt{2}}{2}$B.$\frac{5\sqrt{2}}{2}$+1C.$\frac{5\sqrt{2}}{2}$-2D.$\frac{5\sqrt{2}}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列四条直线,倾斜角最大的是(  )
A.x=1B.y=x+1C.y=2x+1D.y=-x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若sin(α-β)cosβ+cos(α-β)sinβ=-m,且α为第四象限,则cosα的值为(  )
A.$\sqrt{1-{m^2}}$B.$-\sqrt{1-{m^2}}$C.$\sqrt{{m^2}-1}$D.$-\sqrt{{m^2}-1}$

查看答案和解析>>

同步练习册答案