| A. | f(4)<f(7) | B. | f(4)>f(7) | C. | f(5)>f(7) | D. | f(5)<f(7) |
分析 根据题意,由y=f(x+6)为偶函数,可得函数y=f(x)的图象关于直线x=6对称,分析可得f(4)=f(8),f(5)=f(7);可以判定C、D错误,再结合函数在(6,+∞)上的单调性,可得f(8)>f(7),又由f(4)=f(8),即可得f(4)>f(7);综合可得答案.
解答 解:根据题意,y=f(x+6)为偶函数,则函数f(x)的图象关于x=6对称,
f(4)=f(8),f(5)=f(7);
故C、D错误;
又由函数在(6,+∞)上为增函数,则有f(8)>f(7);
又由f(4)=f(8),
故有f(4)>f(7);
故选:B.
点评 本题考查函数的单调性与奇偶性,其中根据已知分析出函数y=f(x)的图象关于直线x=6对称是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1:6:5:(-8) | B. | 1:6:5:8 | C. | 1:(-6):5:8 | D. | 1:(-6):5:(-8) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{a+b}{2}$ | B. | $\sqrt{ab}$ | C. | $\sqrt{(a+1)(b+1)}-1$ | D. | $\sqrt{(a+1)(b+1)}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 11 | B. | 9 | C. | 12 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com