已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1,
(1)试求常数a、b、c的值;
(2)试判断x=±1是函数的极大值还是极小值,并说明理由.
【答案】
分析:(1)是实数域上的可导函数,可先求导确定可能的极值点,再通过极值点与导数的关系,即极值点必为f′(x)=0的根建立起由极值点x=±1所确定的相关等式,运用待定系数法确定a、b、c的值.
(2)求出f′(x)并分解因式讨论x的取值决定f′(x)的正负研究函数的增减性得到函数的极值.
解答:(1)解:由f′(1)=f′(-1)=0,
得3a+2b+c=0,①
3a-2b+c=0.②
又f(1)=-1,∴a+b+c=-1.③
由①②③解得a=

,b=0,c=-

.
(2)解:f(x)=

x
3-

x,∴f′(x)=

x
2-

=

(x-1)(x+1).
当x<-1或x>1时,f′(x)>0;当-1<x<1时,f′(x)<0.
∴x=-1时,f(x)有极大值;x=1时,f(x)有极小值.
点评:考查学生利用导数研究函数极值的能力,以及用待定系数法求函数解析式的能力.