精英家教网 > 高中数学 > 题目详情
在矩形ABCD中,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足,则的取值范围是   
【答案】分析:先以所在的直线为x轴,以所在的直线为x轴,建立坐标系,写出要用的点的坐标,根据两个点的位置得到坐标之间的关系,表示出两个向量的数量积,根据动点的位置得到自变量的取值范围,做出函数的范围,即要求得数量积的范围.
解答:解:以所在的直线为x轴,以所在的直线为x轴,建立坐标系如图,
∵AB=2,AD=1,
∴A(0,0),B(2,0),C(2,1),D(0,1),
设M(2,b),N(x,1),

∴b=
=(2,),
=
∴1
即1≤≤4
故答案为:[1,4]
点评:本题主要考查平面向量的基本运算,概念,平面向量的数量积的运算,本题解题的关键是表示出两个向量的坐标形式,利用函数的最值求出数量积的范围,本题是一个中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•上海)在矩形ABCD中,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足
|
BM
|
|
BC
|
=
|
CN
|
|
CD
|
,则
AM
AN
的取值范围是
[1,4]
[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(1)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,
OP
的坐标为
 

(2)在矩形ABCD中,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足
|
BM
|
|
BC
|
=
|
CN
|
|
CD
|
,则
AM
AN
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源:2012年普通高等学校招生全国统一考试上海卷数学文科 题型:022

在矩形ABCD中,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足,则·的取值范围是________

查看答案和解析>>

科目:高中数学 来源:2015届浙江省高一上学期期末考试数学试卷(解析版) 题型:解答题

如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0, 1),此时圆上一点P的位置在(0, 0),圆在x轴上沿正向滚动。当圆滚动到圆心位于(2, 1)时,的坐标为______.

(2)(5分)在矩形ABCD中,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足,则的取值范围是________.

 

查看答案和解析>>

同步练习册答案