精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=x2+mx+n,且f(x)≤0的解集为{x|-1≤x≤$\frac{1}{2}$}.
(1)求m,n的值;
(2)求f(2x)>0的解集.

分析 (1)由题意利用二次函数的性质可得-1和$\frac{1}{2}$是方程x2+mx+n=0的两个实数根,再利用韦达定理求得m,n的值.
(2)由题意可得 2x<-1,或 2x>$\frac{1}{2}$,由此求得x的范围.

解答 解:(1)函数f(x)=x2+mx+n,且f(x)≤0的解集为{x|-1≤x≤$\frac{1}{2}$},
∴-1和$\frac{1}{2}$是方程x2+mx+n=0的两个实数根,∴-1+$\frac{1}{2}$=-m,-1•$\frac{1}{2}$=n,
求得m=$\frac{1}{2}$,n=-$\frac{1}{2}$,故f(x)=x2+$\frac{1}{2}$x-$\frac{1}{2}$.
(2)不等式f(2x)>0,即 2x<-1,或 2x>$\frac{1}{2}$,
解得x>-1,即f(2x)>0的解集为{x|x>-1}.

点评 本题主要考查二次函数的性质,韦达定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且$PA=AD=DC=\frac{1}{2}$,AB=1,M是PB的中点.
(1)求AC与PB所成的角的余弦值;
(2)求PC与平面AMC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.${∫}_{-1}^{1}$(1-sin5x+xcos2x+$\sqrt{1-{x}^{2}}$)dx=2+$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\frac{1}{\sqrt{2x}}$的导数f′(x)等于-$\frac{\sqrt{2}}{4\sqrt{{x}^{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知满足ln(a+b)=lna+lnb,ln(a+b+c)=lna+lnb+lnc,则c的取值范围是(1,$\frac{4}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求适合下列条件的直线方程:
(1)经过点P(3,2),且在两坐标轴上的截距相等;
(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;
(3)直线过点(5,10),且到原点的距离为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线x=$\frac{1}{4}$y2的焦点为F,过抛物线的准线l与x轴的交点M作抛物线的一条切线,切点为A,连接AF交抛物线于另一点B,则△MAB的面积为(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若a2x=8,则$\frac{{a}^{3x}+{a}^{-3x}}{{a}^{x}+{a}^{-x}}$的值等于$\frac{57}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sin2x+acos2x(x∈R,a为∈R),若将其图象向右平移$\frac{π}{6}$个单位长度后,所得函数的一个对称中心为($\frac{π}{2}$,0),则a的值为(  )
A.$\sqrt{3}$B.-1C.1D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案