精英家教网 > 高中数学 > 题目详情

如图,已知双曲线C1:,曲线C2:.P是平面内一点.若存在过点P的直线与C1、C2都有共同点,则称P为“C1-C2型点”.

(1)在正确证明C1的左焦点是“C1-C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);

(2)设直线y=kx与C2有公共点,求证>1,进而证明圆点不是“C1-C2型点”;

(3)求证:圆内的点都不是“C1-C2型点”.

【答案】 (1)

【解析】 (1)    显然,由双曲线的几何图像性质可知,过.从曲线图像上取点P(0,1),则直线。这时直线方程为

  

(2) 先证明“若直线y=kx与有公共点,则>1”.

双曲线

.

.

所以直线y=kx与有公共点,则>1 . (证毕)

所以原点不是“C1-C2型点”;(完)

(3)设直线过圆内一点,则直线斜率不存在时与曲线无交点。

设直线方程为:y = kx + m,则:

假设直线与曲线相交上方,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知双曲线C1
y2
m
-
x2
n
=1(m>0,n>0),圆C2:(x-2)2+y2=2,双曲线C1的两条渐近线与圆C2相切,且双曲线C1的一个顶点A与圆心C2关于直线y=x对称,设斜率为k的直线l过点C2
(1)求双曲线C1的方程;
(2)当k=1时,在双曲线C1的上支上求一点P,使其与直线l的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)如图,已知双曲线C1
x2
2
-y2=1
,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1-C2型点”
(1)在正确证明C1的左焦点是“C1-C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”;
(3)求证:圆x2+y2=
1
2
内的点都不是“C1-C2型点”

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试文科数学(上海卷解析版) 题型:填空题

如图,已知双曲线C1,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1﹣C2型点“

(1)在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);

(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;

(3)求证:圆x2+y2=内的点都不是“C1﹣C2型点”

 

查看答案和解析>>

科目:高中数学 来源:上海 题型:解答题

如图,已知双曲线C1
x2
2
-y2=1
,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1-C2型点“
(1)在正确证明C1的左焦点是“C1-C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”;
(3)求证:圆x2+y2=
1
2
内的点都不是“C1-C2型点”
精英家教网

查看答案和解析>>

同步练习册答案