·ÖÎö£º£¨1£©ÓÉË«ÇúÏß·½³Ì¿ÉÖª£¬Ë«ÇúÏßµÄ×ó½¹µãΪ£¨
-£¬0£©£¬µ±¹ý×ó½¹µãµÄÖ±ÏßµÄбÂʲ»´æÔÚʱÂú×ã×ó½¹µãÊÇ¡°C
1-C
2Ð͵㡱£¬µ±Ð±ÂÊ´æÔÚʱ£¬Òª±£Ö¤Ð±Âʵľø¶ÔÖµ´óÓÚµÈÓڸý¹µãÓ루0£¬1£©Á¬ÏßµÄбÂÊ£»
£¨2£©ÓÉÖ±Ïßy=kxÓëC
2Óй«¹²µãÁªÁ¢·½³Ì×éÓÐʵÊý½âµÃµ½|k|£¾1£¬·Ö¹ýÔµãµÄÖ±ÏßбÂʲ»´æÔÚºÍбÂÊ´æÔÚÁ½ÖÖÇé¿ö˵Ã÷¹ýÔ¶µãµÄÖ±Ïß²»¿ÉÄÜͬʱÓëC
1ºÍC
2Óй«¹²µã£»
£¨3£©Óɸø³öµÄÔ²µÄ·½³ÌµÃµ½Ô²µÄͼÐμÐÔÚÖ±Ïßy=x¡À1Óëy=-x¡À1Ö®¼ä£¬½ø¶ø˵Ã÷µ±|k|¡Ü1ʱ¹ýÔ²
x2+y2=ÄڵĵãÇÒбÂÊΪkµÄÖ±ÏßÓëC
2ÎÞ¹«¹²µã£¬µ±|k|£¾1ʱ£¬¹ýÔ²
x2+y2=ÄڵĵãÇÒбÂÊΪkµÄÖ±ÏßÓëC
2Óй«¹²µã£¬ÔÙÓÉÔ²Ðĵ½Ö±ÏߵľàÀëСÓڰ뾶ÁÐʽµÃ³ökµÄ·¶Î§£¬½á¹ûÓë|k|£¾1ì¶Ü£®´Ó¶øÖ¤Ã÷Á˽áÂÛ£®
½â´ð£º£¨1£©½â£ºC
1µÄ×ó½¹µãΪ£¨
-£¬0£©£¬Ð´³öµÄÖ±Ïß·½³Ì¿ÉÒÔÊÇÒÔÏÂÐÎʽ£º
x=-»ò
y=k(x+)£¬ÆäÖÐ
|k|¡Ý£®
£¨2£©Ö¤Ã÷£ºÒòΪֱÏßy=kxÓëC
2Óй«¹²µã£¬
ËùÒÔ·½³Ì×é
ÓÐʵÊý½â£¬Òò´Ë|kx|=|x|+1£¬µÃ
|k|=£¾1£®
ÈôÔµãÊÇ¡°C
1-C
2Ð͵㡱£¬Ôò´æÔÚ¹ýÔµãµÄÖ±ÏßÓëC
1¡¢C
2¶¼Óй«¹²µã£®
¿¼ÂǹýÔµãÓëC
2Óй«¹²µãµÄÖ±Ïßx=0»òy=kx£¨|k|£¾1£©£®
ÏÔȻֱÏßx=0ÓëC
1ÎÞ¹«¹²µã£®
Èç¹ûÖ±ÏßΪy=kx£¨|k|£¾1£©£¬ÔòÓÉ·½³Ì×é
£¬µÃ
x2=£¼0£¬Ã¬¶Ü£®
ËùÒÔÖ±Ïßy=kx£¨|k|£¾1£©ÓëC
1Ò²ÎÞ¹«¹²µã£®
Òò´ËԵ㲻ÊÇ¡°C
1-C
2Ð͵㡱£®
£¨3£©Ö¤Ã÷£º¼ÇÔ²O£º
x2+y2=£¬È¡Ô²OÄÚµÄÒ»µãQ£¬ÉèÓо¹ýQµÄÖ±ÏßlÓëC
1£¬C
2¶¼Óй«¹²µã£¬ÏÔÈ»l²»ÓëxÖá´¹Ö±£¬
¹Ê¿ÉÉèl£ºy=kx+b£®
Èô|k|¡Ü1£¬ÓÉÓÚÔ²O¼ÐÔÚÁ½×éƽÐÐÏßy=x¡À1Óëy=-x¡À1Ö®¼ä£¬Òò´ËÔ²OÒ²¼ÐÔÚÖ±Ïßy=kx¡À1Óëy=-kx¡À1Ö®¼ä£¬
´Ó¶ø¹ýQÇÒÒÔkΪбÂʵÄÖ±ÏßlÓëC
2ÎÞ¹«¹²µã£¬Ã¬¶Ü£¬ËùÒÔ|k|£¾1£®
ÒòΪlÓëC
1Óɹ«¹²µã£¬ËùÒÔ·½³Ì×é
ÓÐʵÊý½â£¬
µÃ£¨1-2k
2£©x
2-4kbx-2b
2-2=0£®
ÒòΪ|k|£¾1£¬ËùÒÔ1-2k
2¡Ù0£¬
Òò´Ë¡÷=£¨4kb£©
2-4£¨1-2k
2£©£¨-2b
2-2£©=8£¨b
2+1-2k
2£©¡Ý0£¬
¼´b
2¡Ý2k
2-1£®
ÒòΪԲOµÄÔ²ÐÄ£¨0£¬0£©µ½Ö±ÏßlµÄ¾àÀë
d=£¬
ËùÒÔ
=d2£¼£¬´Ó¶ø
£¾b2¡Ý2k2-1£¬µÃk
2£¼1£¬Óë|k|£¾1ì¶Ü£®
Òò´Ë£¬Ô²
x2+y2=Äڵĵ㲻ÊÇ¡°C
1-C
2Ð͵㡱£®