精英家教网 > 高中数学 > 题目详情

【题目】已知不等式组 表示的平面区域为D,若(x,y)∈D,|x|+2y≤a为真命题,则实数a的取值范围是(
A.[10,+∞)
B.[11,+∞)
C.[13,+∞)
D.[14,+∞)

【答案】D
【解析】解:不等式组 表示的平面区域为D,如图: 当x≥0时,z=|x|+2y=x+2y,z=x+2y经过B时取得最大值,
可得B(1,5),此时z的最大值为:11.
当x<0时,z=|x|+2y=﹣x+2y,z=﹣x+2y经过A时取得最大值,
,可得A(﹣4,5),此时z的最大值为:14.
(x,y)∈D,|x|+2y≤a为真命题,则实数a的取值范围:[14,+∞).
故选:D.

【考点精析】利用命题的真假判断与应用对题目进行判断即可得到答案,需要熟知两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(元)

8

8.2

8.4

8.6

8.8

9

销量y(件)

90

84

83

80

75

68


(1)求回归直线方程 = x+ ,其中 =﹣20, =
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入﹣成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在三棱锥P﹣ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1)证明:AD⊥BC;
(2)求三棱锥D﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2﹣ax+1>0对x∈R恒成立,若p且q为假,p或q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,PC⊥平面ABC,∠PAC=30°,∠ACB=45°,BC=2 ,PA⊥AB.
(1)求PC的长;
(2)若点M在侧棱PB上,且 ,当λ为何值时,二面角B﹣AC﹣M的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我国古代著名的数学专著《九章算术》里有﹣段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里:驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢, 问:需日相逢.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入 万作为技改费用,投入(50+2x)万元作为宣传费用.试问:当该商品改革后的销售量a至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sin(2x+ )+ cos(2x+ ),则(
A.y=f(x)在(0, )单调递增,其图象关于直线x= 对称
B.y=f(x)在(0, )单调递增,其图象关于直线x= 对称
C.y=f(x)在(0, )单调递减,其图象关于直线x= 对称
D.y=f(x)在(0, )单调递减,其图象关于直线x= 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,为测一树的高度,在地面上选取A、B两点,从A、B两点分别测得树尖的仰角为30°、45°,且A、B两点之间的距离为60m,则树的高度为(
A.(30+30 ) m
B.(30+15 ) m??
C.(15+30 ) m
D.(15+15 ) m

查看答案和解析>>

同步练习册答案