精英家教网 > 高中数学 > 题目详情
17.已知a>0,b>0,$\frac{1}{a}$+$\frac{1}{b}$=9,求证:a+4b≥1.

分析 因为a+4b=$\frac{1}{9}$(a+4b)($\frac{1}{a}$+$\frac{1}{b}$),展开后再用基本不等式证明.

解答 证明:因为$\frac{1}{a}$+$\frac{1}{b}$=9,
所以a+4b=$\frac{1}{9}$(a+4b)•($\frac{1}{a}$+$\frac{1}{b}$)
=$\frac{1}{9}$[1+4+$\frac{a}{b}$+$\frac{4b}{a}$]
≥$\frac{1}{9}$[5+2•$\sqrt{\frac{a}{b}•\frac{4b}{a}}$]
=$\frac{1}{9}$[5+4]=1,
即a+4b≥1.

点评 本题主要考查了运用基本不等式证明不等式,即a+b≥2$\sqrt{ab}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{2\sqrt{2}}{3}$,其焦距4$\sqrt{2}$.
(1)求椭圆C的方程;
(2)若P在椭圆上,F1,F2分别为椭圆的左右焦点,且满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=t,求实数t的范围;
(3)过点Q(1,0)作直线l(不与x轴垂直)与该椭圆交于M,N两点,与y轴交于点R,若$\overrightarrow{RM}$=λ$\overrightarrow{MQ}$,$\overrightarrow{RN}$=μ$\overrightarrow{NQ}$,试判断λ+μ是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设F1、F2是双曲线$\frac{{x}^{2}}{4}$-y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=120°,则△F1PF2的面积为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若函数y=sin2x+acosx-$\frac{a}{2}$-$\frac{3}{2}$的最大值为1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等比数列1,$\sqrt{3}$,3,…中,27$\sqrt{3}$是(  )
A.第6项B.第7项C.第8项D.第9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R上的函数f(x)满足f(x)=(-2-x),当x≥-1时,f(x)=3-2x,若f(x)在区间(λ,λ+1)上有零点,则λ的值为(  )
A.1或-4B.-1或4C.-1或3D.1或-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=2sin(2x-$\frac{π}{4}$)的相位、频率分别为(  )
A.2x-$\frac{π}{4}$,$\frac{1}{2π}$B.-$\frac{π}{4}$,$\frac{1}{2π}$C.2x-$\frac{π}{4}$,$\frac{1}{π}$D.-$\frac{π}{4}$,$\frac{1}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知x>0,y>0,z>0,x+y+z=3,求$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.集合A={1,2,0},B={1,3},求A∪B.

查看答案和解析>>

同步练习册答案