分析 (1)运用椭圆的离心率公式和a,b,c的关系,解方程可得a,b,进而得到椭圆方程;
(2)设P(m,n),求得椭圆的两焦点,运用向量的数量积的坐标表示,再由椭圆的参数方程,结合同角的平方关系和余弦函数的值域,即可得到所求范围;
(3)设出直线l的方程y=k(x-1),把直线的方程与椭圆的方程联立,利用根与系数的关系、向量相等化简整理,即可得到定值.
解答 解:(1)由题意可得e=$\frac{c}{a}$=$\frac{2\sqrt{2}}{3}$,2c=4$\sqrt{2}$,
解得c=2$\sqrt{2}$,a=3,b=$\sqrt{{a}^{2}-{c}^{2}}$=1,
即有椭圆的方程为$\frac{{x}^{2}}{9}$+y2=1;
(2)设P(m,n),F1(-2$\sqrt{2}$,0)F2(2$\sqrt{2}$,0)分别为椭圆的左右焦点,
t=$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=(-2$\sqrt{2}$-m,-n)•(2$\sqrt{2}$-m,n)=(-2$\sqrt{2}$-m)(2$\sqrt{2}$-m)+n2,
=m2+n2-8,
设m=3cosα,n=sinα,则m2+n2-8=9cos2α+sin2α-8=8cos2α-7,
由于0≤cos2α≤1,即有t的取值范围是[-7,1];
(3)λ+μ=-$\frac{9}{4}$,即λ+μ为定值.
理由如下:依题意知,直线l的斜率存在,故可设直线l的方程为y=k(x-1),
设M(x1,y1),N(x2,y2),R(0,y3),
由 $\left\{\begin{array}{l}{y=k(x-1)}\\{{x}^{2}+9{y}^{2}=9}\end{array}\right.$,消去y并整理,得(1+9k2)x2-18k2x+9k2-9=0,
所以x1+x2=$\frac{18{k}^{2}}{1+9{k}^{2}}$①,x1•x2=$\frac{9{k}^{2}-9}{1+9{k}^{2}}$②,
因为$\overrightarrow{RM}$=λ$\overrightarrow{MQ}$,所以(x1,y1)-(0,y3)=λ[(1,0)-(x1,y1)],
即 $\left\{\begin{array}{l}{{x}_{1}=λ(1-{x}_{1})}\\{{y}_{1}-{y}_{3}=-λ{y}_{1}}\end{array}\right.$,又x1≠1与x1≠1轴不垂直,所以x1≠1,
所以λ=$\frac{{x}_{1}}{1-{x}_{1}}$,同理μ=$\frac{{x}_{2}}{1-{x}_{2}}$,
所以λ+μ=$\frac{{x}_{1}}{1-{x}_{1}}$+$\frac{{x}_{2}}{1-{x}_{2}}$=$\frac{({x}_{1}+{x}_{2})-2{x}_{1}{x}_{2}}{1-({x}_{1}+{x}_{2})+{x}_{1}{x}_{2}}$,
将①②代入上式可得λ+μ=-$\frac{9}{4}$,即λ+μ为定值.
点评 本题考查椭圆的标准方程及性质、直线与椭圆的相交问题、根与系数的关系、点到直线的距离公式、向量相等及向量的数量积的坐标表示,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=2x-1 | B. | y=1 | C. | y=3x-2 | D. | y=-2x+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 12 | C. | 20 | D. | 24 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com