精英家教网 > 高中数学 > 题目详情

【题目】E为正四面体D﹣ABC棱AD的中点,平面α过点A,且α∥平面ECB,α∩平面ABC=m,α∩平面ACD=n,则m、n所成角的余弦值为(  )
A.
B.
C.
D.

【答案】A
【解析】解:如图,

由α∥平面ECB,且α∩平面ABC=m,α∩平面ACD=n,

结合面面平行的性质可得:m∥BC,n∥EC,

∴∠BCE为m、n所成角,

设正四面体的棱长为2,则BE=CE=

则cos∠BCE=

故正确答案为:A.

【考点精析】本题主要考查了异面直线及其所成的角的相关知识点,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足:,且(n=1,2,...).记
集合
(1)(Ⅰ)若,写出集合M的所有元素;
(2)(Ⅱ)若集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;
(3)(Ⅲ)求集合M的元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(  )
A.x∈R,f(x)≤f(x0
B.x∈R,f(x)≥f(x0
C.x∈R,f(x)≤f(x0
D.x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:其中正确命题的序号是
①设a,b是非零实数,若a<b,则ab2<a2b;
②若a<b<0,则
③函数y= 的最小值是2;
④若x,y是正数, + =1,则x+2y的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi , yi)(i=1,2,…,n),用最小二乘法建立的回归方程为 =0.85x﹣85.71,则下列结论中不正确的是( )
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论正确的个数是( )

若正实数满足,则的最小值是16;

已知,则函数的最大值为

已知,且,则的最小值是36;

若对任意实数,不等式恒成立,则实数的取值范围是

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式

(1)若,求不等式的解集;

(2)若已知不等式的解集不是空集,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|﹣|2x|.
(1)解不等式f(x)>﹣3;
(2)求函数y=f(x)的图象与x轴围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是数列的前n项和,,且

(1)求数列的通项公式;

(2)对于正整数,已知成等差数列,求正整数的值;

(3)设数列n项和是,且满足:对任意的正整数n,都有等式成立.求满足等式的所有正整数n.

查看答案和解析>>

同步练习册答案