精英家教网 > 高中数学 > 题目详情
设F1、F2分别为椭圆C:(a>b>0)的左、右焦点,若椭圆C 上的点A(1,)到F1,F2两点的距离之和等于4,求椭圆C的方程和焦点坐标、离心率.

解析:由已知2a =4,a =2                             ………………2分

又A(1,)在椭圆上,∴             ………………6分

 ∴b2 = 3,故椭圆方程:,                 ………………9分

焦点(,0),离心率为e =.                  ………………12分
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2分别为椭C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右两个焦点,椭圆C上的点A(1,
3
2
)
到两点的距离之和等于4.
(Ⅰ)求椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点Q(0.
1
2
)
求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设F1,F2分别为椭C:数学公式(a>b>0)的左、右两个焦点,椭圆C上的点数学公式到两点的距离之和等于4.
(Ⅰ)求椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点数学公式求|PQ|的最大值.

查看答案和解析>>

同步练习册答案