【题目】教材曾有介绍:圆
上的点
处的切线方程为
.我们将其结论推广:椭圆
(
)上的点
处的切线方程为
,在解本题时可以直接应用.已知,直线
与椭圆
:
(
)有且只有一个公共点.
![]()
(1)求椭圆
的方程;
(2)设
为坐标原点,过椭圆
上的两点
、
分别作该椭圆的两条切线
、
,且
与
交于点
.当
变化时,求
面积的最大值;
(3)若
是椭圆![]()
上不同的两点,![]()
轴,圆
过
且椭圆
上任意一点都不在圆
内,则称圆
为该椭圆的一个内切圆.试问:椭圆
是否存在过左焦点
的内切圆?若存在,求出圆心
的坐标;若不存在,请说明理由.
【答案】(1)
;(2)
;(3)存在,![]()
【解析】
(1)将直线
代入椭圆方程,得到
的方程,由直线和椭圆相切的条件:判别式为0,解方程可得
的值;
(2)设切点
,可得切线
,再由
代入上式,结合两点确定一条直线,可得切点弦方程,即有
的斜率,结合两点的斜率公式,由①可得
的方程为
,运用点到直线的距离公式和直线与椭圆方程联立,运用韦达定理和弦长公式,求得
的面积,化简整理,运用基本不等式即可得到所求最大值;
(3)依题意可得符合要求的圆
,即为过点
的三角形的外接圆.所以圆心在
轴上.根据题意写出圆
的方程.由于圆的存在必须要符合,椭圆上的点到圆
距离的最小值是
,结合图形可得圆心
在线段
上,半径最小.又由于点
已知,即可求得结论.
解:(1)将直线
代入椭圆方程
,
可得
,
由直线和椭圆相切,可得
,
解得
(由
),
即有椭圆
的方程为
;
(2)设切点
,
可得切线
,
由
与
交于点
,可得
,
由两点确定一条直线,可得
的方程为
,
即为
,
原点到直线
的距离为
,
由
消去
,可得
,
,
可得
,
可得
的面积
,
设
,
,
当且仅当
即
时,
取得最大值
;
(3)椭圆的对称性,可以设
,点
在
轴上,设点
,
则圆
的方程为:
,
由内切圆定义知道,椭圆上的点到点
距离的最小值是
,
设点
是椭圆
上任意一点,
则
,
当
时,
最小,
,①,
又圆
过点
,
,②
点
在椭圆上,
,③
由①②③,解得:
或
,
又
时,
,不合题意,
综上:椭圆
存在符合条件的内切圆,点
的坐标是
.
科目:高中数学 来源: 题型:
【题目】如图,已知F是抛物线C:
的焦点,过E(﹣l,0)的直线
与抛物线分別交于A,B两点(点A,B在x轴的上方).
![]()
(1)设直线AF,BF的斜率分別为
,
,证明:
;
(2)若
ABF的面积为4,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点
是双曲线![]()
上的动点,
是双曲线的焦点,M是
的平分线上一点,且
,某同学用以下方法研究
:延长
交
于点N,可知
为等腰三角形,且M为
的中点,得
,类似地:点
是椭圆![]()
上的动点,
椭圆的焦点,M是
的平分线上一点,且
则
的取值范围是______
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某隧道的剖面图是由半圆及矩形
组成,交通部门拟在隧道顶部安装通风设备(视作点
),为了固定该设备,计划除从隧道最高点
处使用钢管垂直向下吊装以外,再在两侧自
两点分别使用钢管支撑.已知道路宽
,设备要求安装在半圆内部,所使用的钢管总长度为
.
![]()
(1)①设
,将
表示为关于
的函数;
②设
,将
表示为关于
的函数;
(2)请选用(1)中的一个函数关系式,说明如何设计,所用的钢管材料最省?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点分别为
,离心率为
,
是椭圆
上的一个动点,且
面积的最大值为
.
(1)求椭圆
的方程;
(2)设直线
斜率为
,且
与椭圆
的另一个交点为
,是否存在点
,使得
若存在,求
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准
(吨)、一位居民的月用水量不超过
的部分按平价收费,超出
的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
![]()
(Ⅰ)求直方图中a的值;
(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准
(吨),估计
的值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是平行四边形,
平面
,
,
,
是棱
上的一点.
(1)若
平面
,证明:
;
(2)在(1)的条件下,棱
上是否存在点
,使直线
与平面
所成角的大小为
?若存在,求
的值;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列命题:
①在线性回归模型中,相关指数
越接近于1,表示回归效果越好;
②两个变量相关性越强,则相关系数r就越接近于1;
③在回归直线方程
中,当解释变量
每增加一个单位时,预报变量
平均减少0.5个单位;
④两个模型中残差平方和越小的模型拟合的效果越好.
⑤回归直线
恒过样本点的中心
,且至少过一个样本点;
⑥若
的观测值满足
≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;
⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com