精英家教网 > 高中数学 > 题目详情
11.过点(-1,2)且和直线3x+2y-7=0垂直的直线方程是(  )
A.3x+2y-1=0B.2x-3y+8=0C.2x-3y+7=0D.3x-2y+5=0

分析 设与直线3x+2y-7=0垂直的直线方程为2x-3y+c=0,把点(-1,2)代入能求出直线方程.

解答 解:设与直线3x+2y-7=0垂直的直线方程为:2x-3y+c=0,
把点(-1,2)代入,得:c=8.
∴过点(-1,2),且与直线3x+2y-7=0垂直的直线方程是2x-3y+8=0.
故选B.

点评 本题考查直线方程的求法,是基础题,解题时要注意直线间位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在等差数{an}中,3(a2+a6)+2(a5+a10+a15)=24,则此数列前13项之和为(  )
A.26B.13C.52D.156

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=Acos(πx+φ)(其中A>0,0<φ<π,x∈R).当x=$\frac{1}{3}$时,f(x)取得最小值-2.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.Sn为数列{an}的前n项和,已知an>0,(an+1)2=4Sn
(1)求{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)是定义在(0,+∞)上的增函数,f(xy)=f(x)+f(y),f(3)=1.
(1)求f(9);
(2)求解不等式f(2x)>2+f(x-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log2(1-x).
(1)求函数f(x)及g(x)的解析式;
(2)若关于x的方程f(2x)=m有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知直线L过(2,-1)且与直线$\sqrt{3}x+y+10=0$的夹角为60°,则L的方程为y=-1,或y=$\sqrt{3}$x-2$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)=a(x+b)2+c.
(1)若x=-1,函数f(x)有最小值0,且f(1)=1,求函数f(x)的解析式;
(2)若f(x)在(-$\frac{1}{2}$,+∞)上单调递增,且f(x)的顶点在x轴上,求满足f(2)+mf(-2)=mf(1)的实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A,B,C是△ABC的三个内角,设f(B)=4sinBcos2($\frac{π}{4}$+$\frac{B}{2}$)+cos2B,若f(B)-m<2恒成立,则实数m的取值范围是(  )
A.m>$\frac{5}{4}$B.m<-$\frac{3}{4}$C.m>1D.m>-$\frac{3}{4}$

查看答案和解析>>

同步练习册答案