精英家教网 > 高中数学 > 题目详情
f(x)定义在R上的偶函数,在区间(-∞,0]上递增,且有f(2a2+a+1)<f(3a2-2a+1),求a的取值范围.
分析:方法一:先研究函数在[0,+∞)的单调性,再比较2a2+a+1与3a2-2a+1的大小,取值范围看两者是不是在同一个单调区间上,本题比较发现两者在同一个单调区间上,利用单调性直接比较.
方法二:比较两数2a2+a+1与3a2-2a+1的大小,看到两者不在已知单调性的区间上,故利用偶函数的性质把其转化到对称的区间上来比较大小,进而再得到两者的函数值的大小.
解答:解:法1
2a2+a+1=2(a+
1
4
)2+
7
8
7
8

3a2-2a+1=3(a-
1
3
)2+
2
3
2
3
(4分)

f(x)定义在R上的偶函数,在区间(-∞,0]上递增
因此函数f(x)在[0,+∞)上递减(6分)
又f(2a2+a+1)<f(3a2-2a+1)
2a2+a+1>3a2-2a+1(10分)
∴a2-3a<0∴0<a<3.(12分)
法2:2a2+a+1=2(a+
1
4
)2+
7
8
7
8

3a2-2a+1=3(a-
1
3
)2+
2
3
2
3
(4分)

又f(x)定义在R上的偶函数,且
f(2a2+a+1)<f(3a2-2a+1)
∴f(-2a2-a-1)<f(-3a2+2a-1)(6分)
又f(x)在区间(-∞,0]上递增
∴-2a2-a-1<-3a2+2a-1(10分)
∴a2-3a<0∴0<a<3.(12分)
点评:考查利用单调性比较函数值的大小,本题中两个数是抽象的数,需要用配方法来确定它们的取值范围,这给作题增加一定的难度,两个方法在利用偶函数的性质上采取的技巧不同,请仔细体会.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)定义在R上的函数,对于任意的实数a,b都有f(ab)=af(b)+bf(a),且f(2)=1.
(1)求f(
12
)的值
(2)求f(2-n)的解析式(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

14、设f(x)定义在R上的奇函数,且f(x+3)=-f(x),则f(2010)=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)定义在R上的奇函数,且x>0时,f(x)=log2(x+
12
).
(1)求f(x)的解析式;
(2)若M={m|函数g(x)=|f(x)|-m(m∈R)有两个零点},求集合M.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)定义在R上的函数,且不恒为零,对任意的x,y,均有f(x+y)+f(x-y)=2f(x)f(y),则f(x)是(  )

查看答案和解析>>

同步练习册答案