精英家教网 > 高中数学 > 题目详情
15.已知sinα=$\frac{{a}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}}$(a>b>0),则cosα等于(  )
A.±$\frac{2ab}{{a}^{2}+{b}^{2}}$B.$\frac{2ab}{{a}^{2}+{b}^{2}}$C.-$\frac{2ab}{{a}^{2}+{b}^{2}}$D.$\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$

分析 由题意可得sinα=$\frac{{a}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}}$>0,α 是第一或第二象限角,可得cosα=±$\sqrt{{1-sin}^{2}α}$,计算求的结果.

解答 解:∵a>b>0,∴sinα=$\frac{{a}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}}$>0,∴α 是第一或第二象限角,则cosα=±$\sqrt{{1-sin}^{2}α}$=±$\frac{2ab}{{a}^{2}+{b}^{2}}$,
故选:A.

点评 本题主要考查同角三角函数的基本关系,余弦函数、正弦函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知α是第三象限角,且满足$\sqrt{6}$sinα+cosα=$\sqrt{5}$,则tanα=(  )
A.$\sqrt{10}$-$\sqrt{6}$B.$\sqrt{6}$-$\sqrt{5}$C.2$\sqrt{6}$-$\sqrt{5}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{3}$x3+x2+ax+1(a∈R),求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合M={x|-2<x<2,x∈Z},N={x|$\frac{1}{2}$<2x<4},则M∩N等于(  )
A.{-1,0}B.{1}C.{0}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.①设函数f(x)=2x-1,g(x)=4x+3,求f(g(x)),g(g(x));
②设函数f(x)=ax2+bx,且f(x+1)-f(x)=2x+2,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列各式中的x的值.
(1)lg0.01=x.
(2)log7(x+2)=2.
(3)log${\;}_{\frac{2}{3}}$$\frac{9}{4}$=x.
(4)x=log${\;}_{\frac{1}{2}}$32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:(log43+log83)$\frac{lg2}{lg3}$+log535-2log5$\frac{7}{3}$+log57-log51.8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“$\frac{1}{a}$>$\frac{1}{b}$”是“a<b<0”的(  )条件.
A.充分而不必要B.必要而不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.不等式ln(-x)+x2-1>0解集是(-∞,-1).

查看答案和解析>>

同步练习册答案