精英家教网 > 高中数学 > 题目详情

已知数列{an}满足.

(1)求证:数列为等比数列;

(2)是否存在互不相等的正整数,使成等差数列,且 成等比数列?如果存在,求出所有符合条件的;如果不存在,请说明理由.

 

【答案】

(1)详见解析;(2)详见解析

【解析】

试题分析:(1)先利用倒数法得到,再结合待定系数法得到,从而证明数列为等比数列;(2)在(1)的条件下求出数列的通项公式,假设相应的正整数满足题中条件,并列出相应的等式组并进行化简,利用基本不等式得出矛盾,从而说明符合题中条件的正整数不存在.

试题解析:(1)因为,所以. 所以.

因为,则.

所以数列是首项为,公比为的等比数列;

(2)由(1)知,,所以.

假设存在互不相等的正整数满足条件,

则有

.

.

因为,所以.

因为,当且仅当时等号成立,

这与互不相等矛盾.

所以不存在互不相等的正整数满足条件.

考点:1.倒数法求数列通项;2.待定系数法求数列通项;3.基本不等式

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案