2£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{{\sqrt{6}}}{3}$£¬Á¬½ÓÍÖÔ²µÄËĸö¶¥µãµÃµ½µÄËıßÐεÄÃæ»ýΪ4$\sqrt{3}$£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©¹ýµã£¨m£¬0£©£¨m£¾$\sqrt{6}$£©ÇÒбÂÊΪ-$\frac{{\sqrt{3}}}{3}$µÄÖ±Ïßl½»ÍÖÔ²ÓÚC£¬DÁ½µã£¬FΪÍÖÔ²µÄÓÒ½¹µã£¬Èç¹û|CD|2=4|FC|•|FD|£¬Çó¡ÏCFDµÄ´óС£®

·ÖÎö £¨1£©ÓÉÀëÐÄÂʿɵÃa£¬bµÄ¹ØÏµ£¬ÔÙÓÉÁ¬½ÓÍÖÔ²µÄËĸö¶¥µãµÃµ½µÄËıßÐεÄÃæ»ýΪ$4\sqrt{3}$£¬µÃµ½a£¬bµÄÁíÒ»¹ØÏµ£¬ÁªÁ¢Çó³öa£¬bµÃ´ð°¸£»
£¨2£©ÓÉÌâÒâµÃÖ±ÏßlµÄ·½³ÌΪ$y=-\frac{\sqrt{3}}{3}£¨x-m£©£¨m£¾\sqrt{6}£©$£¬ÁªÁ¢Ö±Ïß·½³ÌÓëÍÖÔ²·½³Ì£¬ÓÉ¡÷£¾0Çó³ömµÄ·¶Î§£¬ÔÙÀûÓøùÓëϵÊýµÄ¹ØÏµÇó³öC£¬DÁ½µãºá×ø±êµÄºÍÓë»ý£¬½øÒ»²½°Ñ|CD||FC|Óú¬ÓÐmµÄ´úÊýʽ±íʾ£¬½áºÏ|CD|2=4|FC|•|FD|ÇóµÃm=3£¬¿ÉµÃ$\overrightarrow{FC}•\overrightarrow{FD}=£¨{x}_{1}-2£©£¨{x}_{2}-2£©+{y}_{1}{y}_{2}$=$\frac{4}{3}{x}_{1}{x}_{2}-\frac{m+6}{3}£¨{x}_{1}{+x}_{2}£©+\frac{{m}^{2}}{3}+4$=$\frac{2£¨{m}^{2}-3m£©}{3}=0$£®
Ôò¡ÏCFDµÄ´óС¿ÉÇó£®

½â´ð ½â£ºÈçͼ£¬
£¨1£©¡ß$e=\frac{c}{a}=\sqrt{1-\frac{b^2}{a^2}}=\frac{{\sqrt{6}}}{3}$£¬¡à$a=\sqrt{3}b$£¬
ÓÖÁ¬½ÓÍÖÔ²µÄËĸö¶¥µãµÃµ½µÄËıßÐεÄÃæ»ýΪ$4\sqrt{3}$£¬
¡à$2ab=4\sqrt{3}$£¬¼´$ab=2\sqrt{3}$£¬
¡àa2=6£¬b2=2£¬Òò´ËÍÖÔ²µÄ·½³ÌΪ$\frac{x^2}{6}+\frac{y^2}{2}=1$£»
£¨2£©ÓÉÌâÒâµÃÖ±ÏßlµÄ·½³ÌΪ$y=-\frac{\sqrt{3}}{3}£¨x-m£©£¨m£¾\sqrt{6}£©$£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1}\\{y=-\frac{\sqrt{3}}{3}£¨x-m£©}\end{array}\right.$£¬µÃ2x2-2mx+m2-6=0£®
ÓÉ¡÷=4m2-8£¨m2-6£©£¾0£¬½âµÃ$-2\sqrt{3}£¼m£¼2\sqrt{3}$£®
ÓÖm$£¾\sqrt{6}$£¬¡à$\sqrt{6}£¼m£¼2\sqrt{3}$£¬
ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬
Ôò${x}_{1}+{x}_{2}=m£¬{x}_{1}{x}_{2}=\frac{{m}^{2}-6}{2}$£¬
¡à|CD|=$\sqrt{1+£¨-\frac{\sqrt{3}}{3}£©^{2}}•\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{2}{3}\sqrt{3}•\sqrt{12-{m}^{2}}$£®
ÓÖ¡ß|FC|=$\sqrt{£¨{x}_{1}-2£©^{2}+{{y}_{1}}^{2}}=\sqrt{£¨{{x}_{1}}^{2}-4{x}_{1}+4£©+\frac{6-{{x}_{1}}^{2}}{3}}$=$\sqrt{\frac{2}{3}}£¨3-{x}_{1}£©$£®
|FD|=$\sqrt{£¨{x}_{2}-2£©^{2}+{{y}_{2}}^{2}}=\sqrt{£¨{{x}_{2}}^{2}-4{x}_{2}+4£©+\frac{6-{{x}_{2}}^{2}}{3}}$=$\sqrt{\frac{2}{3}}£¨3-{x}_{2}£©$£®
|FC||FD|=$\frac{2}{3}£¨3-{x}_{1}£©£¨3-{x}_{2}£©=\frac{2}{3}[{x}_{1}{x}_{2}-3£¨{x}_{1}+{x}_{2}£©+9]$=$\frac{1}{3}£¨{m}^{2}-6m+12£©$£®
ÓÉ|CD|2=4|FC|•|FD|£¬µÃ$\frac{4}{3}£¨12-m£©^{2}=\frac{4}{3}£¨{m}^{2}-6m+12£©$£¬½âµÃm=0»òm=3£®
ÓÖ$\sqrt{6}£¼m£¼2\sqrt{3}$£¬¡àm=3£¬
ÓÖ¡ß$\overrightarrow{FC}=£¨{x}_{1}-2£¬{y}_{1}£©£¬\overrightarrow{FD}=£¨{x}_{2}-2£¬{y}_{2}£©$£¬
ÇÒ${y}_{1}{y}_{2}=[-\frac{\sqrt{3}}{3}£¨{x}_{1}-m£©]•[-\frac{\sqrt{3}}{3}£¨{x}_{2}-m£©]$=$\frac{1}{3}{x}_{1}{x}_{2}-\frac{m}{3}£¨{x}_{1}+{x}_{2}£©+\frac{{m}^{2}}{3}$£®
¡à$\overrightarrow{FC}•\overrightarrow{FD}=£¨{x}_{1}-2£©£¨{x}_{2}-2£©+{y}_{1}{y}_{2}$=$\frac{4}{3}{x}_{1}{x}_{2}-\frac{m+6}{3}£¨{x}_{1}{+x}_{2}£©+\frac{{m}^{2}}{3}+4$=$\frac{2£¨{m}^{2}-3m£©}{3}=0$£®
¡à¡ÏCFD=90¡ã£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÔ²×¶ÇúÏßλÖùØÏµµÄÓ¦Óã¬Éæ¼°Ö±ÏßÓëÔ²×¶ÇúÏߵĹØÏµÎÊÌ⣬³£²ÉÓðÑÖ±Ïß·½³ÌºÍÔ²×¶ÇúÏß·½³ÌÁªÁ¢£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµÇó½â£¬ÑµÁ·ÁËÆ½ÃæÏòÁ¿ÔÚÇó½âÔ²×¶ÇúÏßÎÊÌâÖеÄÓ¦Óã¬ÊÇѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=x3-$\frac{1}{2}m{x^2}$-1µÄµ¼º¯ÊýΪf¡ä£¨x£©£¬g£¨x£©=emx+f¡ä£¨x£©£®
£¨¢ñ£©Èôf£¨2£©=11£¬ÇóÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Ö¤Ã÷º¯Êýg£¨x£©ÔÚ£¨-¡Þ£¬0£©Éϵ¥µ÷µÝ¼õ£¬ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£»
£¨¢ó£©Èô¶ÔÈÎÒâx1£¬x2¡Ê[-1£¬1]£¬¶¼ÓÐ|g£¨x1£©-g£¨x2£©|¡Üe+1£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªsin£¨¦Ð+¦Á£©=-$\frac{1}{2}$£¬¼ÆË㣺
£¨1£©sin£¨5¦Ð-¦Á£©£º
£¨2£©sin£¨¦Á-3¦Ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁÐÃüÌâÖÐÕæÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
¢ÙÒÑÖª·ÇÁãÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬Ôò|$\overrightarrow{a}$+$\overrightarrow{b}$|±Ø´óÓÚ|$\overrightarrow{a}$|Óë|$\overrightarrow{b}$|ÖÐÈÎÒâÒ»¸ö£»
¢ÚÈô$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$£¬ÔòA£¬B£¬CΪÈý½ÇÐεÄÈý¸ö¶¥µã£»
¢ÛÉè$\overrightarrow{a}$¡Ù$\overrightarrow{0}$£¬Èô$\overrightarrow{a}$¡Î£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©£¬Ôò$\overrightarrow{a}$¡Î$\overrightarrow{b}$£»
¢ÜÈô|$\overrightarrow{a}$|-|$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|£¬Ôò$\overrightarrow{b}$=$\overrightarrow{0}$£®
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÈôÇúÏßC1£¬y=x2ÓëÇúÏßC2£ºy=aex´æÔÚ¹«ÇÐÏߣ¬ÔòaµÄ£¨¡¡¡¡£©
A£®×î´óֵΪ$\frac{8}{{e}^{2}}$B£®×î´óֵΪ$\frac{4}{{e}^{2}}$C£®×îСֵΪ$\frac{8}{{e}^{2}}$D£®×îСֵΪ$\frac{4}{{e}^{2}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®É躯Êýf£¨x£©=log2£¨$\sqrt{{x}^{2}+1}$+x£©
£¨1£©Çóº¯Êýf£¨x£©µÄ¶¨ÒåÓò£»
£¨2£©ÅжϺ¯Êýf£¨x£©µÄÆæÅ¼ÐÔ£»
£¨3£©ÇóÖ¤£ºº¯Êýf£¨x£©ÔÚ[0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªm¡ÊR£¬º¯Êýf£¨x£©=$\left\{\begin{array}{l}{|x+1|£¬}&{x£¼1}\\{lg£¨x-1£©£¬}&{x£¾1}\end{array}\right.$£¬g£¨x£©=x2-2x+2m-2£¬Èôº¯Êýy=f£¨g£¨x£©£©-mÓÐ6¸öÁãµã£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬2£©B£®£¨$\frac{3}{4}$£¬1£©C£®£¨$\frac{2}{3}$£¬$\frac{3}{4}$£©D£®£¨0£¬$\frac{2}{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªA£¨0£¬2£¬3£©£¬B£¨-2£¬1£¬6£©£¬C£¨1£¬-1£¬5£©£¬ÔòÆ½ÃæABCµÄ·¨ÏòÁ¿µÄ×ø±êΪ£¨1£¬1£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èôloga$\frac{4}{5}$£¼1£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨$\frac{4}{5}$£¬1£©B£®£¨$\frac{4}{5}$£¬+¡Þ£©C£®£¨0£¬$\frac{4}{5}$£©¡È£¨1£¬+¡Þ£©D£®£¨0£¬$\frac{4}{5}$£©¡È£¨$\frac{4}{5}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸