£¨2012•ÉϺ££©Éè10¡Üx1£¼x2£¼x3£¼x4¡Ü104£¬x5=105£¬Ëæ»ú±äÁ¿¦Î1È¡Öµx1¡¢x2¡¢x3¡¢x4¡¢x5µÄ¸ÅÂʾùΪ0.2£¬Ëæ»ú±äÁ¿¦Î2È¡Öµ
x1+x2
2
¡¢
x2+x3
2
¡¢
x3+x4
2
¡¢
x4+x5
2
¡¢
x5+x1
2
µÄ¸ÅÂÊÒ²¾ùΪ0.2£¬Èô¼ÇD¦Î1¡¢D¦Î2·Ö±ðΪ¦Î1¡¢¦Î2µÄ·½²î£¬Ôò£¨¡¡¡¡£©
·ÖÎö£º¸ù¾ÝËæ»ú±äÁ¿¦Î1¡¢¦Î2µÄÈ¡ÖµÇé¿ö£¬¼ÆËãËüÃǵÄƽ¾ùÊý£¬¸ù¾ÝËæ»ú±äÁ¿¦Î1¡¢¦Î2µÄÈ¡ÖµµÄ¸ÅÂʶ¼Îª0.2£¬¼´¿ÉÇóµÃ½áÂÛ£®
½â´ð£º½â£ºÓÉËæ»ú±äÁ¿¦Î1¡¢¦Î2µÄÈ¡ÖµÇé¿ö£¬ËüÃǵÄƽ¾ùÊý·Ö±ðΪ£º
.
x
=
1
5
£¨x1+x2+x3+x4+x5£©£¬
.
x¡ä
=
1
5
£¨
x1+x2
2
+
x2+x3
2
+
x3+x4
2
+
x4+x5
2
+
x5+x1
2
£©=
.
x
ÇÒËæ»ú±äÁ¿¦Î1¡¢¦Î2µÄÈ¡ÖµµÄ¸ÅÂʶ¼Îª0.2£¬ËùÒÔÓÐD¦Î1£¾D¦Î2£¬
¹ÊÑ¡ÔñA£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûºÍ·½²î¹«Ê½£®¼ÇÀι«Ê½Êǽâ¾ö´ËÀàÎÊÌâµÄÇ°ÌáºÍ»ù´¡£¬±¾ÌâÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉϺ£¶þÄ££©ÉèË«ÇúÏß
x2
4
-y2=1µÄÓÒ½¹µãΪF£¬µãP1¡¢P2¡¢¡­¡¢PnÊÇÆäÓÒÉÏ·½Ò»¶Î£¨2¡Üx¡Ü2
5
£¬y¡Ý0£©Éϵĵ㣬Ï߶Î|PkF|µÄ³¤¶ÈΪak£¬£¨k=1£¬2£¬3£¬¡­£¬n£©£®ÈôÊýÁÐ{an}³ÉµÈ²îÊýÁÐÇÒ¹«²îd¡Ê£¨
1
5
£¬
5
5
£©£¬Ôòn×î´óȡֵΪ
14
14
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉϺ££©Éèan=
1
n
sin
n¦Ð
25
£¬Sn=a1+a2+¡­+an£¬ÔÚS1£¬S2£¬¡­S100ÖУ¬ÕýÊýµÄ¸öÊýÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉϺ£¶þÄ££©ÒÑÖªxÖáÉϵĵãA1£¬A2¡­£¬AnÂú×ã
.
AnAn+1
=
1
2
.
An-1An
£¨n¡Ý2£¬n¡ÊN*£©£¬ÆäÖÐA1£¨1£¬0£©£¬A2£¨5£¬0£©£»µãB1£¬B2£¬¡­Bn£¬¡­ÔÚÉäÏßy=x£¨x¡Ý0£©ÉÏ£¬Âú×ã|
.
OBn+1
|=|
.
OBn
|+2
2
 £¨n¡ÊN*£©£¬ÆäÖÐB1£¨3£¬3£©£®
£¨1£©ÓÃn±íʾµãAnÓëBnµÄ×ø±ê£»
£¨2£©ÉèÖ±ÏßAnBnµÄбÂÊΪkn£¬Çó
lim
n¡ú¡Þ
kn掙术
£¨3£©ÇóËıßÐÎAnAn+1Bn+1BnÃæ»ýSµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉϺ££©ÉèOΪ¡÷ABCËùÔÚƽÃæÄÚÒ»µã£®ÈôʵÊýx¡¢y¡¢zÂú×ãx
OA
+y
OB
+z
OC
=0£¬£¨x2+y2+z2¡Ù0£©£¬Ôò¡°xyz=0¡±ÊÇ¡°µãOÔÚ¡÷ABCµÄ±ßËùÔÚÖ±ÏßÉÏ¡±µÄ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸