精英家教网 > 高中数学 > 题目详情

已知椭圆数学公式+数学公式=1上的两点A、B与右焦点F2满足|AF2|+|BF2|=数学公式a,又线段AB中点到左准线的距离为数学公式,求此椭圆方程.

解:设A(x1,y1),B(x2,y2),

由焦半径公式有a-ex1+a-ex2=,∴x1+x2=,即AB中点横坐标为
又左准线方程为,∴,即a=1,
∴椭圆方程为
分析:可使用焦半径公式,设A(x1,y1),B(x2,y2),则|AF2|=a-ex1,|BF2|=a-ex2,从而可得,即AB中点横坐标,再由线段AB中点到左准线的距离为,列方程即可得a的值,最后确定椭圆方程
点评:本题考查了椭圆的两个定义及椭圆的标准方程和几何性质,重点掌握两个定义及其应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,F1,F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右两个焦点,A,B为两个顶点,已知椭圆C上的点到F1,F2两点的距离之和为4且b=
3

(1)求椭圆C的方程和焦点坐标;
(2)过椭圆C的焦点F2作AB的平行线交椭圆于P,Q两点,求△F1PQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的左、右两个焦点,A、B为两个顶点,已知椭圆C上的点(1,
3
2
)
到F1、F2两点的距离之和为4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的焦点F2作AB的平行线交椭圆于P、Q两点,求△F1PQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点是F(1,0),已知椭圆短轴的两个三等分点与一个焦点构成正三角形.
(1)求椭圆的标准方程;
(2)已知Q(x0,y0)为椭圆上任意一点,求以Q为切点,椭圆的切线方程.
(3)设点P为直线x=4上一动点,过P作椭圆两条切线PA,PB,求证直线AB过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点是F(1,0),0为坐标原点.
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(Ⅱ)点M是直线l:x=4上的动点,以OM为直径的圆过点N,且NF⊥OM,是否存在一个定点,使得N到该定点的距离为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点,A、B为两个顶点,已知椭圆C上的点(1,
3
2
)到F1、F2两点的距离之和为4.
(1)求椭圆C的方程和焦点坐标;
(2)设点M是椭圆上的动点N(0,
1
2
),求|MN|的最大值.
(3)过椭圆C的焦点F2作AB的平行线交椭圆于P、Q两点,求△F1PQ的面积.

查看答案和解析>>

同步练习册答案