精英家教网 > 高中数学 > 题目详情

在△ABC中,内角A,B,C的对边分别为a,b,c,且a2=b2+c2+bc.
(1)求A;
(2)设a=,S为△ABC的面积,求S+3cos Bcos C的最大值,并指出此时B的值.

(1)    (2)3  B=

解析解:(1)由余弦定理得cosA===-.
又0<A<π,所以A=.
(2)由(1)得sinA=,又由正弦定理及a=
S=absinC=··asinC=3sinBsinC,
因此,S+3cosBcosC=3(sinBsinC+cosBcosC)
=3cos(B-C).
所以,当B=C,即B==时,
S+3cosBcosC取最大值3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在△中,角的对边分别为,且
(1)求角的大小;
(2)若,求边的长和△的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.

(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a、b、c分别为△ABC三个内角A、B、C的对边,acosC+asinC-b-c=0.
(1)求A;
(2)若a=2,△ABC的面积为,求b、c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知函数处取最小值.
(1)求的值。
(2)在△ABC中,a、b、c分别是A、B、C的对边,已知a=l,b=,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三角形ABC中,内角A、B、C所对的边a、b、c成公比小于1的等比数列,且.(1)求内角B的余弦值;(2)若,求三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角ABC所对的边分别是abc,设平面向量e1e2,且e1e2.
(1)求cos 2A的值;
(2)若a=2,求△ABC的周长L的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在锐角△ABC中,内角A、B、C的对边分别为a、b、c,且2asinB=b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.

查看答案和解析>>

同步练习册答案