精英家教网 > 高中数学 > 题目详情

在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.

(1)    (2)

解析解:(1)由2asinB=b及正弦定理=,
得sinA=.
因为A是锐角,所以A=.
(2)由余弦定理a2=b2+c2-2bccosA,
得b2+c2-bc=36.
又b+c=8,所以bc=.
由三角形面积公式S=bcsinA,
得△ABC的面积为××=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在△中,内角的对边分别为,且
(1)求角的值;
(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,a、b、c分别是角A、B、C的对边,△ABC的周长为+2,且sinA+sinB=sinC.
(1)求边c的长;
(2)若△ABC的面积为sinC,求角C的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC中,,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,内角A,B,C的对边分别为a,b,c,且a2=b2+c2+bc.
(1)求A;
(2)设a=,S为△ABC的面积,求S+3cos Bcos C的最大值,并指出此时B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三角形ABC中,内角A、B、C所对的边a、b、c成公比小于1的等比数列,且.(1)求内角B的余弦值;(2)若,求三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,a、b、c分别是角A、B、C所对的边,且a=c+bcosC.
(1)求角B的大小;
(2)若S△ABC=,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为,已知
(1)求证:
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形.由对称性,图中8个三角形都是全等的三角形,设

(1)试用表示的面积;
(2)求八角形所覆盖面积的最大值,并指出此时的大小.

查看答案和解析>>

同步练习册答案