精英家教网 > 高中数学 > 题目详情

在△ABC中,a、b、c分别是角A、B、C的对边,△ABC的周长为+2,且sinA+sinB=sinC.
(1)求边c的长;
(2)若△ABC的面积为sinC,求角C的度数.

(1)(2)∠C=60

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

中,角的对边分别为.已知,且
(1)当时,求的值;
(2)若角为锐角,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求的最小正周期和值域;
(2)在锐角△中,角的对边分别为,若,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角A、B、C的对边分别为a、b、c,S是该三角形的面积
(1)若求角B的度数
(2)若a=8,B=,S=,求b的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A、B、C所对的边分别是a、b、c,已知c=2,C=.
(1)若△ABC的面积等于,求a、b;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.

(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在等腰直角△OPQ中,∠POQ=90°,OP=2,点M在线段PQ上.

(1)若OM=,求PM的长;
(2)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在锐角△ABC中,内角A、B、C的对边分别为a、b、c,且2asinB=b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.

查看答案和解析>>

同步练习册答案