精英家教网 > 高中数学 > 题目详情

如图,在等腰直角△OPQ中,∠POQ=90°,OP=2,点M在线段PQ上.

(1)若OM=,求PM的长;
(2)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.

(1) MP=1或MP=3   (2) 当α=30°时,sin(2α+30°)的最大值为1,此时△OMN的面积取到最小值.即∠POM=30°时,△OMN的面积的最小值为8-4.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在△ABC中,a、b、c分别是角A、B、C的对边,△ABC的周长为+2,且sinA+sinB=sinC.
(1)求边c的长;
(2)若△ABC的面积为sinC,求角C的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,a、b、c分别是角A、B、C所对的边,且a=c+bcosC.
(1)求角B的大小;
(2)若S△ABC=,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为,已知
(1)求证:
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为
(1)求的值;
(2)求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形.由对称性,图中8个三角形都是全等的三角形,设

(1)试用表示的面积;
(2)求八角形所覆盖面积的最大值,并指出此时的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别是,已知.
(1)若的面积等于,求
(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角ABC对应的边分别是abc.已知cos 2A-3cos(BC)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5b=5,求sin Bsin C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量mn.
(1)若m·n=1,求cos 的值;
(2)记f(x)=m·n,在△ABC中,角ABC的对边分别是abc,且满足(2ac)cos Bbcos C,求函数f(A)的取值范围.

查看答案和解析>>

同步练习册答案