精英家教网 > 高中数学 > 题目详情
12.己知二次函数f(x)=ax2+bx+c(a>0,b∈R,c∈R)
(1)若函数f(x)的最小值是f(-$\frac{1}{2}$)=-$\frac{1}{4}$,且f(0)=0,g(x)=$\left\{\begin{array}{l}{f(x),x≥0}\\{-f(x-1),x<0}\end{array}\right.$,判断并证明函数g(x)的奇偶性;
(2)在(1)条件下,求f(x)在区间[-1,m](m>-1)上的最小值.

分析 (1)由二次函数的最值可得c=0,-$\frac{b}{2a}$=-$\frac{1}{2}$,$\frac{4ac-{b}^{2}}{4a}$=-$\frac{1}{4}$,解方程可得a=b=1,c=0,求得g(x)的解析式,运用奇偶性的定义,即可判断;
(2)求得f(x)的对称轴,讨论区间与对称轴的关系,运用单调性即可得到最小值.

解答 解:(1)函数f(x)的最小值是f(-$\frac{1}{2}$)=-$\frac{1}{4}$,且f(0)=0,
即有c=0,-$\frac{b}{2a}$=-$\frac{1}{2}$,$\frac{4ac-{b}^{2}}{4a}$=-$\frac{1}{4}$,
解得a=b=1,c=0,可得f(x)=x2+x,
g(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x≥0}\\{x-{x}^{2},x<0}\end{array}\right.$,g(x)为奇函数.
理由:当x=0时,g(0)=0,
当x>0时,-x<0,g(-x)=-x-(-x)2=-(x+x2)=-g(x),
当x<0时,-x>0,g(-x)=-x+(-x)2=-(x-x2)=-g(x),
综上可得g(-x)=-g(x),即有g(x)为奇函数;
(2)f(x)=x2+x=(x+$\frac{1}{2}$)2-$\frac{1}{4}$,对称轴为x=-$\frac{1}{2}$,
当-1<m≤-$\frac{1}{2}$时,f(x)在[-1,m]递减,f(m)取得最小值,且为m2+m;
当m>-$\frac{1}{2}$时,f(x)在[-1,-$\frac{1}{2}$]递减,在[-$\frac{1}{2}$,m]递增,
即有x=-$\frac{1}{2}$时,取得最小值,且为-$\frac{1}{4}$.

点评 本题考查二次函数的解析式的求法和分段函数的奇偶性的判断,考查二次函数在闭区间上的最值的求法,注意分类讨论的思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.两圆x2+y2=4与(x+1)2+(y-1)2=1的位置关系是(  )
A.内含B.相交C.相切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中已知点A(1,1),B(3,3),C(4,2).
(1)若$\overrightarrow{OQ}$=λ1$\overrightarrow{OC}$+λ2$\overrightarrow{OB}$,(λ1,λ2∈R,且满足λ12=1.写出Q的轨迹方程(可以只写结果);
(2)点P(x,y)在三角形ABC三边围成的区域内(含边界),若有$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R).用x,y表示m+n,并求m+n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两焦点为F1(-4,0),F2(4,0),过F2作x轴的垂线交双曲线于A,B两点,若△ABF1内切圆的半径为a,则此双曲线方程为$\frac{{x}^{2}}{24-8\sqrt{5}}-\frac{{y}^{2}}{384-128\sqrt{5}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin(2x+φ),(φ∈R),若f(x)≤|f($\frac{π}{6}$)|对x∈R恒成立,且f($\frac{π}{2}$)<f(π),对于结论:①f($\frac{π}{2}$)=-$\frac{1}{2}$;②f(x)是奇函数;③f(x)的单调递增区间是[kx-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z);④f($\frac{7π}{10}$)>f($\frac{π}{5}$),其中正确的是(  )
A.①②B.②③C.③④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)═$(\frac{1}{2})^{|x|}$的图象大致是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(1)设数列{an}中,a1=2.an+1=an+n+1.则通项an=$\frac{{n}^{2}+n+2}{2}$;
(2)数列{an}中,a1=1,an+1=3an+2,则它的一个通项公式为an=-1+2•3n-1
(3)在数列{an}中.a1=1.前n项和Sn=$\frac{n+2}{3}{a}_{n}$.则{an} 的通项公式为an=$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=|sinx|的最小正周期T=π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x,y∈R,a>1且ax+(a+1)y≥a-y+(a+1)-x,则x与y满足 (  )
A.x+y≥0B.x+y≤0C.x-y≤0D.x-y≥0

查看答案和解析>>

同步练习册答案