精英家教网 > 高中数学 > 题目详情

设f(x)=log)为奇函数,a为常数.

(Ⅰ)求a的值;

(Ⅱ)证明f(x)在(1,+∞)内单调递增;

(Ⅲ)若对于[3,4]上的每一个的值,不等式恒成立,求实数的取值范围.

 

【答案】

(Ⅰ)(Ⅱ)

(Ⅲ)

【解析】

试题分析:(Ⅰ)函数是奇函数,所以带入得,经验证时不合题意

考点:函数奇偶性单调性最值

点评:函数是奇函数则满足,复合函数的单调性由构成复合函数的基本初等函数决定,当两初等函数单调性相同时,复合后递增,反之递减;不等式恒成立求参数范围的题目常采用分离参数法转化为求函数最值的题目

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年福建省三明一中高一(上)期中数学试卷(解析版) 题型:解答题

设f(x)=log为奇函数,b为常数.
(1)求b的值;
(2)求f(2)+f(3)+…+f(9)+f(10)的值;
(3)若对于区间[3,4]上的每一个x的值,不等式f(x)>(x+m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�