精英家教网 > 高中数学 > 题目详情
现有甲、乙、丙、丁四名义工到三个不同的社区参加公益活动.若每个社区至少一名义工,则甲、乙两人被分到不同社区的概率为(  )
分析:分别有排列组合的知识求得,两种情况所对应的方法种数,然后由古典概型的公式可得.
解答:解:因为甲、乙两名义工分配到同一个社区有A33=3×2=6种排法;
将四名义工分配到三个不同的社区,每个社区至少分到一名义工有C42•A33=36种排法;
故有甲、乙两人分配到不同社区共有有36-6=30种排法;
故所求概率为:
30
36
=
5
6

故选B
点评:本题为古典概型的求解,准确用排列组合数得出所对应的方法种数是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽“卡的概率是
215
,求抽奖者获奖的概率;
(2)现有甲、乙、丙、丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某社区举办2011年西安世园会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世园会会徽”或“长安花”(世园会吉祥物)图案,参加者从盒中一次抽取卡片两张,记录后放回.若抽到两张都是“长安花”卡即可获奖.
(Ⅰ)活动开始后,一位参加者问:盒中有几张“长安花”卡?主持人说:我只知道若从盒中抽两张都不是“长安花”卡的概率是
215
,求抽奖者获奖的概率;
(Ⅱ)现有甲、乙、丙、丁四人每人抽奖一次,用ξ表示获奖的人数,求ξ的分布列及Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

某旅游推介活动晚会进行嘉宾现场抽奖活动,抽奖规则是:抽奖盒中装有10个大小相同的小球,分别印有“多彩十艺节”和“美丽泉城行”两种标志,摇匀后,参加者每次从盒中同时抽取两个小球,若抽到两个球都印有“多彩十艺节”标志即可获奖.
(Ⅰ)活动开始后,一位参加者问:盒中有几个“多彩十艺节”球?主持人笑说:我只知道从盒中同时抽两球不都是“美丽泉城行”标志的概率是
23
,求抽奖者获奖的概率;
(Ⅱ)上面条件下,现有甲、乙、丙、丁四人依次抽奖,抽后放回,另一个人再抽,用ξ表示获奖的人数,求ξ的分布列及Eξ,Dξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽“卡的概率是
518
,求抽奖者获奖的概率;
(2)现有甲、乙、丙、丁四人依次抽奖,用ξ表示获奖的人数,求P(ξ=3).

查看答案和解析>>

同步练习册答案