精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(2x+2)e-x(e为自然对数的底数)
(1)求函数f(x)的单调区间;
(2)设函数φ(x)=
1
2
xf(x)+
1
2
tf′(x)+e-x
,是否存在实数x1,x2∈[0,1],使得2φ(x1)<φ(x2)?若存在,求出实数的取值范围;若不存在,请说明理由.
分析:(1)先求导数fˊ(x)然后在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的区间为单调增区间,fˊ(x)<0的区间为单调减区间.
(2)假设存在实数x1,x2∈[0,1],使得2φ(x1)<φ(x2),则2[φ(x1)]min<φ[(x2)]max
研究φ(x)在[0,1]上单调性,用t表示出φ(x)在[0,1]上的最值,解相关的关于t的不等式求出范围.
解答:解:(1)∵f′(x)=2e-x-(2x+2)e-x=
-2x
ex
∴f(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减.----(4分)
(Ⅱ)假设存在实数x1,x2∈[0,1],使得2φ(x1)<φ(x2),则2[φ(x1)]min<φ[(x2)]max
--------(6分)
∵函数φ(x)=
1
2
xf(x)+
1
2
tf′(x)+e-x
=
x2+(1-t)x+1
ex

∴φ′(x)=
-x2+(1+t)x-t
ex
=
-(x-t)(x-1) 
ex

①当t≥1时,φ′(x)≤0,φ(x)在[0,1]上单调递减
∴2φ(1)<φ(0),即2
3-t
e
<1,得t>3-
e
2
>1.
②当t≤0时,φ′(x)>0,φ(x)在[0,1]上单调递增.
∴2φ(0)<φ(1),即2<
3-t
e
,得t<3-2e<0----(10分)
③当0<t<1时,
在x∈[0,t),φ′(x)<0,φ(x)在[0,t]上单调递减
在x∈(t,1],φ′(x)>0,φ(x)在[t,1]上单调递增.
∴2φ(t)<max{ φ(0),φ(1)},即2•
t+1
et
<max{ 1,
3-t
e
}①
由(Ⅰ)知,f(t)=2•
t+1
et
在[0,1]上单调递减,故
4
e
≤2•
t+1
et
≤2
,而
2
e
3-t
e
3
e
,所以不等式①
无解.综上所述,存在t∈(-∞,3-2e)∪(3-
e
2
,+∞
),使命题成立.
点评:本题考查函数单调性与导数关系,求函数单调区间,求最值,最值的应用,分类讨论思想.关键是转化到2[φ(x1)]min<φ[(x2)]max,难点在于分类讨论求相应的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案