精英家教网 > 高中数学 > 题目详情

数列an的前n项和为Sn,Sn=2an-3n(n∈N*).
(Ⅰ)证明数列an+3是等比数列,求出数列an的通项公式;
(Ⅱ)设数学公式,求数列bn的前n项和Tn
(Ⅲ)判断数列an中是否存在构成等差数列的三项?若存在,求出一组符合条件的项;若不存在,说明理由.

解:(Ⅰ)因为Sn=2an-3n,所以Sn+1=2an+1-3(n+1),
则an+1=2an+1-2an-3,所以an+1=2an+3,
数列an+3是等比数列,a1=S1=3,a1+3=6,an+3=6•2n-1=3•2n
所以an=3•2n-3.
(Ⅱ),Tn=2+2•22+3•23++n•2n-(1+2++n),
令Tn=2+2•22+3•23++n•2n,①2Tn=22+2•23+3•24++(n-1)•2n+n•2n+1,②
①-②得,-Tn=2+22++2n-n•2n+1=-2(1-2n)-n•2n+1,Tn=2+(n-1)•2n+1
所以
(Ⅲ)设存在s,p,r∈N*,且s<p<r,使得as,ap,ar成等差数列,则2ap=as+ar,即2(3•2p-3)=3•2s-3+3•2r-3
即2p+1=2s+2r,2p-s+1=1+2r-s,2p-s+1,2r-s为偶数,而1+2r-s为奇数,
所以2p+1=2s+2r不成立,故不存在满足条件的三项.
分析:(Ⅰ)根据an+1=Sn+1-Sn,求得an+1=2an+3,整理可得判断出数列an+3是等比数列,进而利用等比数列的通项公式求得an+3进而求得an
(Ⅱ)把(1)中的an代入bn中,进而利用错位相减法和等差数列的求和公式求得前n项的和.
(Ⅲ)设存在s,p,r∈N*,且s<p<r,使得as,ap,ar成等差数列,根据等差中项的性质可知2ap=as+ar,利用(1)中的an展开得2p+1=2s+2r,2p-s+1=1+2r-s,进而根据2p-s+1,2r-s为偶数,而1+2r-s为奇数,判断出假设不成立.故可知不存在这样的三项.
点评:本题主要考查了数列的求和问题.考查了学生综合分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn=npan(n∈N*)且a1≠a2
(1)求常数p的值;
(2)证明:数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,令Tn=
S1+S2+…+Sn
n
,称Tn为数列a1,a2,…,an的“理想数”,已知数列a1,a2,…,a500的“理想数”为2004,那么数列9,a1,a2,…,a500的“理想数”为(  )
A、2004B、2005
C、2009D、2008

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,an+1=2an+n+1,n∈N*
(Ⅰ)若数列{an+pn+q}是等比数列,求实数p、q的值;
(Ⅱ)若数列{an}的前n项和为Sn,求an和Sn
(Ⅲ)试比较an与(n+2)2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,已知a1=1,a2=6,a3=11,且(5n-8)Sn+1-(5n+2)Sn=An+B,n=1,2,3,…,其中A.B为常数.
(1)求A与B的值;
(2)证明:数列{an}为等差数列;
(3)证明:不等式
5amn
-
aman
>1对任何正整数m,n都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[0,1]且同时满足:①对任意x∈[0,1]总有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)=f(x1)+f(x2)-2.
(I)求f(0)的值;
(II)求f(x)的最大值;
(III)设数列{an}的前n项和为Sn,且Sn=-
12
(an-3)(n∈N*)
,求f(a1)+f(a2)+…+f(an).

查看答案和解析>>

同步练习册答案