精英家教网 > 高中数学 > 题目详情
已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,
2
)
为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线y=x对称.
(Ⅰ)求双曲线C的方程;
(Ⅱ)设直线y=mx+1与双曲线C的左支交于A,B两点,另一直线l经过M(-2,0)及AB的中点,求直线l在y轴上的截距b的取值范围;
(Ⅲ)若Q是双曲线C上的任一点,F1F2为双曲线C的左,右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程.
分析:(Ⅰ)设双曲线C的渐近线方程为y=kx,则kx-y=0,由该直线与圆x2+(y-
2
)2=1
相切,知双曲线C的两条渐近线方程为y=±x.由此利用双曲线C的一个焦点为 (
2
,0)
,能求出双曲线C的方程.
(Ⅱ)由
y=mx+1
x2-y2=1
,得(1-m2)x2-2mx-2=0.令f(x)=(1-m2)x2-2mx-2.直线与双曲线左支交于两点,等价于方程f(x)=0在(-∞,0)上有两个不等实根.由此能求出直线l在y轴上的截距b的取值范围.
(Ⅲ)若Q在双曲线的右支上,则延长QF2到T,使|QT|=|QF1|,若Q在双曲线的左支上,则在QF2上取一点T,使|QT|=|QF1|.由此能求出点N的轨迹方程.
解答:解:(Ⅰ)设双曲线C的渐近线方程为y=kx,
则kx-y=0
∵该直线与圆x2+(y-
2
)2=1
相切,
∴双曲线C的两条渐近线方程为y=±x.
故设双曲线C的方程为
x2
a2
-
y2
a2
=1

又双曲线C的一个焦点为 (
2
,0)

∴2a2=2,a2=1.
∴双曲线C的方程为x2-y2=1.
(Ⅱ)由
y=mx+1
x2-y2=1

得(1-m2)x2-2mx-2=0.
令f(x)=(1-m2)x2-2mx-2
直线与双曲线左支交于两点,等价于方程f(x)=0在(-∞,0)上有两个不等实根.
因此
△>0
2m
1-m2
<0
-2
1-m2
>0

解得1<m<
2

又AB中点为(
m
1-m2
1
1-m2
)

∴直线l的方程为y=
1
-2m2+m+2
(x+2)

令x=0,
b=
2
-2m2+m+2
=
2
-2(m-
1
4
)
2
+
17
8

m∈(1,
2
)

-2(m-
1
4
)2+
17
8
∈(-2+
2
,1)

b∈(-∞,-2-
2
)∪(2,+∞)

(Ⅲ)若Q在双曲线的右支上,
则延长QF2到T,使|QT|=|QF1|,
若Q在双曲线的左支上,
则在QF2上取一点T,使|QT|=|QF1|.
根据双曲线的定义|TF2|=2,
所以点T在以F2(
2
,0)
为圆心,2为半径的圆上,
即点T的轨迹方程是(x-
2
)2+y2=4(x≠0)

由于点N是线段F1T的中点,
设N(x,y),T(xT,yT).
x=
xT-
2
2
y=
yT
2
,即
xT=2x+
2
yT=2y

代入①并整理得点N的轨迹方程为x2+y2=1.(x≠-
2
2
)
点评:本题考查直线与圆锥曲线的位置关系的综合运用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•潍坊一模)已知抛物线y2=2px(p>0)的焦点F与双曲
x2
4
-
y2
5
=1
的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且|AK|=
2
|AF|
,则A点的横坐标为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)已知椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)与双曲4x2-
4
3
y2=1有相同的焦点,且椭C的离心e=
1
2
,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年龙岩一中冲刺文)(分)已知双曲线C的中心在原点,焦点在x轴上,右准线为一条渐近线的方程是过双曲线C的右焦点F2的一条弦交双曲线右支于P、Q两点,R是弦PQ的中点.

   (1)求双曲线C的方程;

   (2)若A、B分别是双曲C上两条渐近线上的动点,且2|AB|=|F1F2|,求线段AB的中点M的迹方程,并说明该轨迹是什么曲线。

   (3)若在双曲线右准线L的左侧能作出直线m:x=a,使点R在直线m上的射影S满足,当点P在曲线C上运动时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A (0,)为圆心,1为半径的圆相切,又知C的一个焦点与A关于y = x对称.

    (1)求双曲线C的方程;

    (2)若Q是双曲线线C上的任一点,F1F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程;

    (3)设直线y = mx + 1与双曲线C的左支交于AB两点,另一直线l经过M (–2,0)及AB的中点,求直线ly轴上的截距b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省潍坊市高三3月第一次模拟考试文科数学试卷(解析版) 题型:选择题

已知抛物线的焦点F与双曲的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且,则A点的横坐标为

A.            B.3                C.            D.4

 

查看答案和解析>>

同步练习册答案