精英家教网 > 高中数学 > 题目详情
已知函数y=x2+2x-4的定义域为[-3,a],求函数值域的范围.
考点:二次函数的性质
专题:函数的性质及应用
分析:通过讨论当-3<a≤-1时,当-1<a≤1时,当-1<a≤1时的情况,从而求出函数的值域.
解答: 解:∵y′=2x+2=2(x+1),
当-3<a≤-1时,函数在[-3,a]递减,
∴x=a时,y最小为:a2+2a-4,
x=-3时,y最大为:-1,
∴函数的值域为:[a2+2a-4,-1];
当a>-1时,函数在[-1,a]递增,在[-3,-1]递减,
∴x=-1时,y最小为-5,
当-1<a≤1时,x=-3时,y最大为:-1,
∴函数的值域为:[-5,-1],
当-1<a≤1时,x=a时,y最大为:a2+2a-4,
∴函数的值域为:[-5,a2+2a-4].
点评:本题考查了函数的值域问题,二次函数的性质,考查了分类讨论思想,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,a3=5,S3=21,数列bn=|an|,求数列{bn} 的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是第三象限角,且f(α)=
sin(π-α)cos(2π-α)tan(-α+3π)
cos(-α-π)sin(-π-α)

(1)化简f(α);   
(2)若cos(α-
2
)=
1
5
,求f(α)的值;
(3)若α=-1860°,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=cos(2x+
π
3
)-2sin2x.
(1)求函数f(x)的最大值和单调递增区间;
(2)设A、B、C为△ABC的三个内角,若cosB=
1
3
,f(
C
2
)=-2,求sinA.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列不等式的解集:
(1)6x2-x-1≥0;
(2)-x2+4x-5<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设α,β(α<β)分别是二次方程ax2+bx+c=0和ax2-bx-c=0的非零根,求证:函数f(x)=
a
2
x2+bx+c总在区间(α,β)有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,0)作曲线C:y=xk(x∈(0,+∞),k>1)的切线,切点为Q1,设点Q1在x轴上的投影是点P1;又过点P1作曲线C的切线,切点为Q2,设点Q2在x轴上的投影是点P2;…依次下去,得到一系列点Q1,Q2,…Qn,…,设点Qn的横坐标为an
(Ⅰ)求证:an=(
k
k-1
)n,n∈N*

(Ⅱ)求证:an≥1+
n
k-1

(Ⅲ)求证:
1
a1
+
2
a2
+
3
a3
…+
n
an
k2
-k.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,曲线C1的参数方程为
x=acosϕ
y=bsinϕ
(a>b>0,ϕ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点M(1,
3
2
)
对应的参数ϕ=
π
3
,射线θ=
π
3
与曲线C2交于点D(1,
π
3
)

(Ⅰ)求曲线C1,C2的方程;
(Ⅱ)若点A(ρ1,θ),B(ρ2,θ+
π
2
)
在曲线C1上,求
1
ρ
2
1
+
1
ρ
2
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.

(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上(含110次)为达标,试估计该学校全体高一的学生达标的概率;
(3)为了分析学生的体能与身高,体重等方面的关系,必须再从样本中按分层抽样方法抽出50人作进一步分析,则体能在[120,130)的这段应抽多少人?

查看答案和解析>>

同步练习册答案