精英家教网 > 高中数学 > 题目详情

如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=数学公式AD
(1)求证:BF⊥DM
(2)求平面AMD⊥平面CDE.

解:(1)证明:设P为AD的中点,连接EP,PC,
所以由已知,EF AP BC
∴EP=PC,FA∥EP,EC∥BF,AB∥PC…(2分)
又∵FA⊥平面ABCD,
∴EP⊥平面ABCD
因为PC、AD?平面ABCD
所以EP⊥PC,EP⊥AD
设FA=a,则EP=PC=PD=a,
…(5分)
∵M为EC的中点,
∴DM⊥CE
∵BF∥EC
∴DM⊥BF.…(6分)
(2)证明:连接MP
∵PE=PC,M为EC的中点,∴MP⊥CE
又DM⊥CE,MP∩DM=M
故CE⊥平面AMD…(10分)
而CE?平面CDE.
∴平面AMD⊥平面CDE.…(12分)
分析:(1)设P为AD的中点,连接EP,PC,所以EF AP BC,所以FA∥EP,可得EP⊥平面ABCD,所以EP⊥PC,EP⊥AD,再结合直角三角形的性质可得:ED=CD,进而得到:DM⊥CE,又BF∥EC,所以DM⊥BF.
(2)欲证平面AMD⊥平面CDE,即证CE⊥平面AMD,根据线面垂直的判定定理可知只需证CE与平面AMD内两相交直线垂直即可,易证DM⊥CE,MP⊥CE.
点评:本小题要考查线面垂直、平面与平面垂直等基础知识,考查空间想像能力和推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.
(Ⅰ)求证:BF∥平面ACGD;
(Ⅱ)求五面体ABCDEFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在五面体ABCDE中,平面BCD⊥平面ABC,DC=DB=
3
,AC=BC=2ED=2,AC⊥BC,且ED∥AC    
(1)求证:平面ABE⊥平面ABC
(2)在线段BC上有一点F,且BF=
1
2
,求二面角F-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在五面体ABC-DEF中,四边形BCFE 是矩形,DE⊥平面BCFE.
求证:(1)BC⊥平面ABED;
(2)CF∥AD.

查看答案和解析>>

科目:高中数学 来源:2012年辽宁省鞍山一中高考数学五模试卷(理科)(解析版) 题型:解答题

如图,在五面体ABCDE中,平面BCD⊥平面ABC,DC=DB=,AC=BC=2ED=2,AC⊥BC,且ED∥AC    
(1)求证:平面ABE⊥平面ABC
(2)在线段BC上有一点F,且,求二面角F-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:2012年高考数学预测试卷2(文科)(解析版) 题型:解答题

如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.
(Ⅰ)求证:BF∥平面ACGD;
(Ⅱ)求五面体ABCDEFG的体积.

查看答案和解析>>

同步练习册答案