精英家教网 > 高中数学 > 题目详情
7.${∫}_{1}^{2}$x2dx=$\frac{7}{3}$.

分析 求出被积函数的原函数,计算定积分值.

解答 解:${∫}_{1}^{2}$x2dx=$\frac{1}{3}{x}^{3}{|}_{1}^{2}$=$\frac{8}{3}-\frac{1}{3}=\frac{7}{3}$;
故答案为:$\frac{7}{3}$.

点评 本题考查了定积分的计算,关键是求出被积函数的原函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{m}$=(cos$\frac{x}{4}$,1),n=($\sqrt{3}$sin$\frac{x}{4}$,cos2$\frac{x}{4}$)
(1)若$\overrightarrow{m}$•$\overrightarrow{n}$=1,求sin($\frac{x}{2}$+$\frac{π}{6}$)的值;
(2)记f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,在△ABC中,角A、B、C的对边分别为a,b,c,且满足($\sqrt{2}$a-c)cosB=bcosC,求函数f(2A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设等比数列{an}的前n项和为Sn,已知an+1=2Sn+2(n∈N*
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列,
①在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;
②记Tn=$\frac{1}{d_1}+\frac{1}{d_2}+\frac{1}{d_3}+…+\frac{1}{d_n}(n∈{N^*})$,求满足Tn≤$\frac{3}{4}$的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.f′(x)是函数f(x)的导数,函数$\frac{f(x)}{{e}^{x}}$是增函数(e=2.718281828…是自然对数的底数),f′(x)与f(x)的大小关系是(  )
A.f′(x)=f(x)B.f′(x)>f(x)C.f′(x)≤f(x)D.f′(x)≥f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知b∈R,若(1+bi)(2-i)为纯虚数,则|1+bi|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某研究结构对高中学段学生的记忆能力x和识图能力y进行统计分析,得到如下数据:
x0123
y-11m8
若y与x的回归直线方程$\widehat{y}$=3x-$\frac{3}{2}$,则实数m的值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=lnx-x(0<x<1),则下列不等式正确的是(  )
A.f2(x)<f(x2)<f(x)B.f(x2)<f2(x)<f(x)C.f(x)<f(x2)<f2(x)D.f(x2)<f(x)<f2(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在数列{an}中,a2=$\frac{1}{3}$,(n+2)an+1=nan,则数列{an}的前n项的和Sn等于$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,且向量$\overrightarrow{a}$与$\overrightarrow{b}$互相垂直.
(Ⅰ)若向量$\overrightarrow{c}$=3k$\overrightarrow{a}$+4k$\overrightarrow{b}$(k∈R),且|$\overrightarrow{c}$|=12$\sqrt{2}$,求|k|的值;
(Ⅱ)若向量$\overrightarrow{c}$满足($\overrightarrow{a}-\overrightarrow{c}$)$⊥(\overrightarrow{c}-\overrightarrow{b})$,求|$\overrightarrow{c}$|的取值范围.

查看答案和解析>>

同步练习册答案