精英家教网 > 高中数学 > 题目详情

如图1所示为一平面图形的直观图,则此平面图形可能是图2中的(  )

 

【答案】

C

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80
元/米2,水池所有墙的厚度忽略不计.
(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低,并求出最低总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网某工厂拟建一座平面图(如图所示)为矩形且面积为200m2的三级污水处理池,由于地形限制,长、宽都不能超过16m.如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).
(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域;
(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网安通驾校拟围着一座山修建一条环形训练道路OASBCD,道路的平面图如图所示(单位:km),已知曲线ASB为函数y=Asin(ωx+φ)(A>0,0<ω<1,|φ|<
π
2
),x∈[0,3]的图象,且最高点为S(1,2),折线段AOD为固定线路,其中AO=
3
,OD=4,折线段BCD为可变线路,但为保证驾驶安全,限定∠BCD=120°.
(1)求A,ω,φ的值;
(2)应如何设计,才能使折线段道路BCD最长?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2,水池所有墙的厚度忽略不计.
(1)设污水处理池的宽为x,求总造价f(x)的函数解析式;
(2)要使总造价最低,求最低总造价及对应污水处理池的长和宽.

查看答案和解析>>

科目:高中数学 来源:2013年山东省菏泽市鄄城一中高考数学三模试卷(文科)(解析版) 题型:解答题

某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80
元/米2,水池所有墙的厚度忽略不计.
(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低,并求出最低总造价.

查看答案和解析>>

同步练习册答案