【题目】在直角坐标系
中,曲线
的参数方程
(
为参数),直线
的参数方程
(
为参数).
(1)求曲线
在直角坐标系中的普通方程;
(2)以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,当曲线
截直线
所得线段的中点极坐标为
时,求直线
的倾斜角.
科目:高中数学 来源: 题型:
【题目】如图,在菱形
中,![]()
沿对角线
将△
折起,使
之间的距离为
若
分别为线段
上的动点
![]()
(1)求线段
长度的最小值;
(2)当线段
长度最小时,求直线
与平面
所成角的正弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( )
A. 3 971B. 3 972C. 3 973D. 3 974
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
为参数),在以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,点
的极坐标为
,直线
的极坐标方程为
.
(1)求直线
的直角坐标方程与曲线
的普通方程;
(2)若
是曲线
上的动点,
为线段
的中点,求点
到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,椭圆
的右焦点为
,离心率为
,过点
的直线![]()
与
相交于
两点,点
为线段
的中点.
(1)当
的倾斜角为
时,求直线
的方程;
(2)试探究在
轴上是否存在定点
,使得
为定值?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:
(
)的焦距为
,直线
:
与x轴的交点为G,过点
且不与x轴重合的直线
交E于点A,B.当
垂直x轴时,
的面积为
.
(1)求E的方程;
(2)若
,垂足为C,直线
交x轴于点D,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心为原点
,左焦点为
,离心率为
,不与坐标轴垂直的直线
与椭圆
交于
两点.
(1)若
为线段
的中点,求直线
的方程.
(2)若点
是直线
上一点,点
在椭圆
上,且满足
,设直线
与直线
的斜率分别为
,问:
是否为定值?若是.请求出
的值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com